At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the molar concentration of NOBr at equilibrium for the reaction:
[tex]\[ 2 \text{NOBr} (g) \rightleftharpoons 2 \text{NO} (g) + \text{Br}_2 (g) \][/tex]
we will use the given equilibrium constant [tex]\( K_c \)[/tex] and the concentrations of NO and Br[tex]\(_2\)[/tex].
Given:
- [tex]\( K_c = 2.0 \)[/tex]
- [tex]\([ \text{NO} ] = 1.8 \text{ M} \)[/tex]
- [tex]\([ \text{Br}_2 ] = 1.1 \text{ M} \)[/tex]
The equilibrium constant expression for this reaction is:
[tex]\[ K_c = \frac{[\text{NO}]^2 [\text{Br}_2]}{[\text{NOBr}]^2} \][/tex]
We need to solve for [tex]\([\text{NOBr}] \)[/tex]:
[tex]\[ K_c = \frac{[\text{NO}]^2 [\text{Br}_2]}{[\text{NOBr}]^2} \][/tex]
[tex]\[ \Rightarrow [\text{NOBr}]^2 = \frac{[\text{NO}]^2 [\text{Br}_2]}{K_c} \][/tex]
[tex]\[ [\text{NOBr}] = \sqrt{\frac{[\text{NO}]^2 [\text{Br}_2]}{K_c}} \][/tex]
Now plug in the known values:
[tex]\[ [\text{NOBr}] = \sqrt{\frac{{(1.8 \text{ M})}^2 \cdot 1.1 \text{ M}}{2.0}} \][/tex]
Calculate the values inside the square root:
[tex]\[ [\text{NOBr}] = \sqrt{\frac{3.24 \text{ M}^2 \cdot 1.1 \text{ M}}{2.0}} \][/tex]
[tex]\[ [\text{NOBr}] = \sqrt{\frac{3.564 \text{ M}^3}{2.0}} \][/tex]
[tex]\[ [\text{NOBr}] = \sqrt{1.782 \text{ M}^3} \][/tex]
[tex]\[ [\text{NOBr}] = 1.334 \text{ M} \][/tex]
We need to express the answer to two significant figures:
[tex]\[ [\text{NOBr}] = 1.3 \text{ M} \][/tex]
Thus, the molar concentration of NOBr is [tex]\( 1.3 \text{ M} \)[/tex].
[tex]\[ 2 \text{NOBr} (g) \rightleftharpoons 2 \text{NO} (g) + \text{Br}_2 (g) \][/tex]
we will use the given equilibrium constant [tex]\( K_c \)[/tex] and the concentrations of NO and Br[tex]\(_2\)[/tex].
Given:
- [tex]\( K_c = 2.0 \)[/tex]
- [tex]\([ \text{NO} ] = 1.8 \text{ M} \)[/tex]
- [tex]\([ \text{Br}_2 ] = 1.1 \text{ M} \)[/tex]
The equilibrium constant expression for this reaction is:
[tex]\[ K_c = \frac{[\text{NO}]^2 [\text{Br}_2]}{[\text{NOBr}]^2} \][/tex]
We need to solve for [tex]\([\text{NOBr}] \)[/tex]:
[tex]\[ K_c = \frac{[\text{NO}]^2 [\text{Br}_2]}{[\text{NOBr}]^2} \][/tex]
[tex]\[ \Rightarrow [\text{NOBr}]^2 = \frac{[\text{NO}]^2 [\text{Br}_2]}{K_c} \][/tex]
[tex]\[ [\text{NOBr}] = \sqrt{\frac{[\text{NO}]^2 [\text{Br}_2]}{K_c}} \][/tex]
Now plug in the known values:
[tex]\[ [\text{NOBr}] = \sqrt{\frac{{(1.8 \text{ M})}^2 \cdot 1.1 \text{ M}}{2.0}} \][/tex]
Calculate the values inside the square root:
[tex]\[ [\text{NOBr}] = \sqrt{\frac{3.24 \text{ M}^2 \cdot 1.1 \text{ M}}{2.0}} \][/tex]
[tex]\[ [\text{NOBr}] = \sqrt{\frac{3.564 \text{ M}^3}{2.0}} \][/tex]
[tex]\[ [\text{NOBr}] = \sqrt{1.782 \text{ M}^3} \][/tex]
[tex]\[ [\text{NOBr}] = 1.334 \text{ M} \][/tex]
We need to express the answer to two significant figures:
[tex]\[ [\text{NOBr}] = 1.3 \text{ M} \][/tex]
Thus, the molar concentration of NOBr is [tex]\( 1.3 \text{ M} \)[/tex].
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.