Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Cory is making popcorn. He knows that 3 identical scoops of unpopped kernels produce 6 quarts of popcorn.

Which table most likely represents the total amount of popcorn, in quarts, produced by [tex]$x$[/tex] scoops of unpopped kernels?

A.
\begin{tabular}{|c|c|c|c|}
\hline [tex]$x$[/tex] & 3 & 6 & 9 \\
\hline [tex]$f(x)$[/tex] & 6 & 12 & 18 \\
\hline
\end{tabular}

B.
\begin{tabular}{|c|c|c|c|}
\hline [tex]$x$[/tex] & 3 & 6 & 9 \\
\hline [tex]$f(x)$[/tex] & 1.5 & 3 & 4.5 \\
\hline
\end{tabular}

C.
\begin{tabular}{|c|c|c|c|}
\hline [tex]$x$[/tex] & 3 & 6 & 9 \\
\hline [tex]$f(x)$[/tex] & 6 & 12 & 24 \\
\hline
\end{tabular}

D.
\begin{tabular}{|c|c|c|c|}
\hline [tex]$x$[/tex] & 3 & 6 & 9 \\
\hline [tex]$f(x)$[/tex] & 1 & 3 & 9 \\
\hline
\end{tabular}


Sagot :

Let's analyze the information given and determine which table correctly represents the amount of popcorn produced by [tex]\( x \)[/tex] scoops of unpopped kernels.

Cory knows that 3 identical scoops of unpopped kernels produce 6 quarts of popcorn. This tells us that for every 3 scoops, 6 quarts of popcorn are produced.

To find the total amount of popcorn produced by [tex]\( x \)[/tex] scoops, we can set up a proportional relationship and derive a function [tex]\( f(x) \)[/tex].

Given:
[tex]\[ f(3) = 6 \][/tex]

This implies that each 3 scoops give 6 quarts, or more generally:
[tex]\[ f(x) = \frac{6}{3} \times x = 2x \][/tex]

Now, let’s verify each table by applying this function and checking if the values match.

### Table A:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline $x$ & 3 & 6 & 9 \\ \hline $f(x)$ & 6 & 12 & 18 \\ \hline \end{tabular} \][/tex]

Using [tex]\( f(x) = 2x \)[/tex]:
- For [tex]\( x = 3 \)[/tex]: [tex]\( f(3) = 2 \times 3 = 6 \)[/tex] ✅
- For [tex]\( x = 6 \)[/tex]: [tex]\( f(6) = 2 \times 6 = 12 \)[/tex] ✅
- For [tex]\( x = 9 \)[/tex]: [tex]\( f(9) = 2 \times 9 = 18 \)[/tex] ✅

### Table B:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline $x$ & 3 & 6 & 9 \\ \hline $f(x)$ & 1.5 & 3 & 4.5 \\ \hline \end{tabular} \][/tex]

Using [tex]\( f(x) = 2x \)[/tex]:
- For [tex]\( x = 3 \)[/tex]: [tex]\( f(3) = 2 \times 3 = 6 \)[/tex] ❌
- For [tex]\( x = 6 \)[/tex]: [tex]\( f(6) = 2 \times 6 = 12 \)[/tex] ❌
- For [tex]\( x = 9 \)[/tex]: [tex]\( f(9) = 2 \times 9 = 18 \)[/tex] ❌

None of these values match the function [tex]\( f(x) = 2x \)[/tex]. Therefore, Table B is incorrect.

### Table C:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline $x$ & 3 & 6 & 9 \\ \hline $f(x)$ & 6 & 12 & 24 \\ \hline \end{tabular} \][/tex]

Using [tex]\( f(x) = 2x \)[/tex]:
- For [tex]\( x = 3 \)[/tex]: [tex]\( f(3) = 2 \times 3 = 6 \)[/tex] ✅
- For [tex]\( x = 6 \)[/tex]: [tex]\( f(6) = 2 \times 6 = 12 \)[/tex] ✅
- For [tex]\( x = 9 \)[/tex]: [tex]\( f(9) = 2 \times 9 = 18 \)[/tex] ❌

The value for [tex]\( x = 9 \)[/tex] does not match. Therefore, Table C is incorrect.

### Table D:
[tex]\[ \begin{tabular}{|c|c|c|c|} \hline $x$ & 3 & 6 & 9 \\ \hline $f(x)$ & 1 & 3 & 9 \\ \hline \end{tabular} \][/tex]

Using [tex]\( f(x) = 2x \)[/tex]:
- For [tex]\( x = 3 \)[/tex]: [tex]\( f(3) = 2 \times 3 = 6 \)[/tex] ❌
- For [tex]\( x = 6 \)[/tex]: [tex]\( f(6) = 2 \times 6 = 12 \)[/tex] ❌
- For [tex]\( x = 9 \)[/tex]: [tex]\( f(9) = 2 \times 9 = 18 \)[/tex] ❌

None of these values match the function [tex]\( f(x) = 2x \)[/tex]. Therefore, Table D is incorrect.

### Conclusion:
After verifying against the given function [tex]\( f(x) = 2x \)[/tex], the table that correctly represents the relationship between [tex]\( x \)[/tex] scoops of unpopped kernels and the total amount of popcorn produced is:

[tex]\[ \boxed{\text{A}} \][/tex]