At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the magnitude of the magnetic force acting on a point charge, we use the following formula:
[tex]\[ F = q v B \sin(\theta), \][/tex]
where:
- [tex]\( F \)[/tex] is the magnitude of the magnetic force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( v \)[/tex] is the velocity of the charge,
- [tex]\( B \)[/tex] is the magnetic field strength,
- [tex]\( \theta \)[/tex] is the angle between the direction of the velocity and the magnetic field.
Since the charge is moving perpendicular to the magnetic field, the angle [tex]\( \theta \)[/tex] is 90 degrees. The sine of 90 degrees is 1, so the equation simplifies to:
[tex]\[ F = q v B. \][/tex]
Given the values:
- Charge, [tex]\( q = 5.0 \times 10^{-7} \, \text{C} \)[/tex],
- Velocity, [tex]\( v = 2.6 \times 10^{5} \, \text{m/s} \)[/tex],
- Magnetic field strength, [tex]\( B = 1.8 \times 10^{-2} \, \text{T} \)[/tex],
the magnetic force can be calculated by substituting these values into the equation:
[tex]\[ F = (5.0 \times 10^{-7} \, \text{C}) \times (2.6 \times 10^{5} \, \text{m/s}) \times (1.8 \times 10^{-2} \, \text{T}). \][/tex]
After calculating this, we get:
[tex]\[ F = 0.00234 \, \text{N}. \][/tex]
Therefore, the magnitude of the magnetic force acting on the charge is [tex]\( 2.34 \times 10^{-3} \, \text{N} \)[/tex].
Among the given options, this matches:
[tex]\[ 2.3 \times 10^{-3} \, \text{N}. \][/tex]
[tex]\[ F = q v B \sin(\theta), \][/tex]
where:
- [tex]\( F \)[/tex] is the magnitude of the magnetic force,
- [tex]\( q \)[/tex] is the charge,
- [tex]\( v \)[/tex] is the velocity of the charge,
- [tex]\( B \)[/tex] is the magnetic field strength,
- [tex]\( \theta \)[/tex] is the angle between the direction of the velocity and the magnetic field.
Since the charge is moving perpendicular to the magnetic field, the angle [tex]\( \theta \)[/tex] is 90 degrees. The sine of 90 degrees is 1, so the equation simplifies to:
[tex]\[ F = q v B. \][/tex]
Given the values:
- Charge, [tex]\( q = 5.0 \times 10^{-7} \, \text{C} \)[/tex],
- Velocity, [tex]\( v = 2.6 \times 10^{5} \, \text{m/s} \)[/tex],
- Magnetic field strength, [tex]\( B = 1.8 \times 10^{-2} \, \text{T} \)[/tex],
the magnetic force can be calculated by substituting these values into the equation:
[tex]\[ F = (5.0 \times 10^{-7} \, \text{C}) \times (2.6 \times 10^{5} \, \text{m/s}) \times (1.8 \times 10^{-2} \, \text{T}). \][/tex]
After calculating this, we get:
[tex]\[ F = 0.00234 \, \text{N}. \][/tex]
Therefore, the magnitude of the magnetic force acting on the charge is [tex]\( 2.34 \times 10^{-3} \, \text{N} \)[/tex].
Among the given options, this matches:
[tex]\[ 2.3 \times 10^{-3} \, \text{N}. \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.