Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which expression is a trigonometric identity, we need to evaluate the options given and see which one is a well-known true trigonometric relationship.
1. Option 1: [tex]\(\tan ^2 u+\cot ^2 u=1\)[/tex]
- This is not a correct trigonometric identity. The correct relationship between [tex]\(\tan u\)[/tex] and [tex]\(\cot u\)[/tex] is:
[tex]\[ \tan u = \frac{1}{\cot u} \][/tex]
- Additionally, there is a Pythagorean identity:
[tex]\[ \tan^2 u + 1 = \sec^2 u \][/tex]
2. Option 2: [tex]\(\sec u=\sin \frac{1}{u}\)[/tex]
- This is not a correct identity. The secant function is defined as:
[tex]\[ \sec u = \frac{1}{\cos u} \][/tex]
- There is no standard trigonometric identity involving [tex]\(\sec u\)[/tex] and [tex]\(\sin \frac{1}{u}\)[/tex] in this form.
3. Option 3: [tex]\(\sin \left(\frac{\pi}{2}+u\right)=\sin u\)[/tex]
- This is also not correct. According to the sine addition formula, we have:
[tex]\[ \sin \left(\frac{\pi}{2}+u\right) = \cos u \][/tex]
4. Option 4: [tex]\(\sec u=\frac{1}{\cos u}\)[/tex]
- This is a correct trigonometric identity. The secant function is defined as the reciprocal of the cosine function:
[tex]\[ \sec u = \frac{1}{\cos u} \][/tex]
Given the options, the trigonometric identity that is true is:
[tex]\(\sec u=\frac{1}{\cos u}\)[/tex]
So, the correct identity is found in option 4.
1. Option 1: [tex]\(\tan ^2 u+\cot ^2 u=1\)[/tex]
- This is not a correct trigonometric identity. The correct relationship between [tex]\(\tan u\)[/tex] and [tex]\(\cot u\)[/tex] is:
[tex]\[ \tan u = \frac{1}{\cot u} \][/tex]
- Additionally, there is a Pythagorean identity:
[tex]\[ \tan^2 u + 1 = \sec^2 u \][/tex]
2. Option 2: [tex]\(\sec u=\sin \frac{1}{u}\)[/tex]
- This is not a correct identity. The secant function is defined as:
[tex]\[ \sec u = \frac{1}{\cos u} \][/tex]
- There is no standard trigonometric identity involving [tex]\(\sec u\)[/tex] and [tex]\(\sin \frac{1}{u}\)[/tex] in this form.
3. Option 3: [tex]\(\sin \left(\frac{\pi}{2}+u\right)=\sin u\)[/tex]
- This is also not correct. According to the sine addition formula, we have:
[tex]\[ \sin \left(\frac{\pi}{2}+u\right) = \cos u \][/tex]
4. Option 4: [tex]\(\sec u=\frac{1}{\cos u}\)[/tex]
- This is a correct trigonometric identity. The secant function is defined as the reciprocal of the cosine function:
[tex]\[ \sec u = \frac{1}{\cos u} \][/tex]
Given the options, the trigonometric identity that is true is:
[tex]\(\sec u=\frac{1}{\cos u}\)[/tex]
So, the correct identity is found in option 4.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.