Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine how much money Alex had initially, let’s go through the problem step by step.
### Step 1: Define the Variables
Let [tex]\( T \)[/tex], [tex]\( N \)[/tex], and [tex]\( A \)[/tex] be the initial amounts of money Tierra, Nico, and Alex had, respectively. Let [tex]\( x \)[/tex] be the amount of money they each had left after spending.
### Step 2: Set Up the Equations
We know the total amount of money they had initially:
[tex]\[ T + N + A = 865 \][/tex]
We are given information about how much each person spent and how much they had left:
- Tierra spent [tex]\(\frac{2}{5}\)[/tex] of her money:
[tex]\[ T_{left} = T - \frac{2}{5}T = \frac{3}{5}T \][/tex]
- Nico spent [tex]\( \$40 \)[/tex]:
[tex]\[ N_{left} = N - 40 \][/tex]
- Alex spent twice as much as Tierra:
[tex]\[ A_{spent} = 2 \times \frac{2}{5}T = \frac{4}{5}T \][/tex]
So, Alex’s remaining money is:
[tex]\[ A_{left} = A - \frac{4}{5}T \][/tex]
Since after spending, they all had the same amount of money left:
[tex]\[ \frac{3}{5}T = N - 40 = A - \frac{4}{5}T \][/tex]
### Step 3: Solve the System of Equations
We now have three key equations:
[tex]\[ T + N + A = 865 \quad \text{(Equation 1)} \][/tex]
[tex]\[ \frac{3}{5}T = N - 40 \quad \text{(Equation 2)} \][/tex]
[tex]\[ \frac{3}{5}T = A - \frac{4}{5}T \quad \text{(Equation 3)} \][/tex]
#### Simplify Equation 3:
[tex]\[ \frac{3}{5}T + \frac{4}{5}T = A \][/tex]
[tex]\[ \frac{7}{5}T = A \][/tex]
[tex]\[ A = \frac{7}{5}T \quad \text{(Simplified form of Equation 3)} \][/tex]
#### Use Equation 2:
[tex]\[ N = \frac{3}{5}T + 40 \quad \text{(Rearranged form of Equation 2)} \][/tex]
#### Substitute [tex]\(N\)[/tex] and [tex]\(A\)[/tex] back into Equation 1:
[tex]\[ T + \left(\frac{3}{5}T + 40\right) + \frac{7}{5}T = 865 \][/tex]
[tex]\[ T + \frac{3}{5}T + 40 + \frac{7}{5}T = 865 \][/tex]
Combine like terms:
[tex]\[ T + \frac{3}{5}T + \frac{7}{5}T + 40 = 865 \][/tex]
[tex]\[ T + 2T + 40 = 865 \][/tex]
[tex]\[ 3T + 40 = 865 \][/tex]
Solve for [tex]\(T\)[/tex]:
[tex]\[ 3T = 825 \][/tex]
[tex]\[ T = 275 \][/tex]
Now use the value of [tex]\(T\)[/tex] to find [tex]\(N\)[/tex] and [tex]\(A\)[/tex]:
[tex]\[ N = \frac{3}{5} \times 275 + 40 \][/tex]
[tex]\[ N = 165 + 40 \][/tex]
[tex]\[ N = 205 \][/tex]
[tex]\[ A = \frac{7}{5} \times 275 \][/tex]
[tex]\[ A = 385 \][/tex]
### Conclusion
Therefore, Alex initially had:
[tex]\[ \boxed{385} \][/tex]
So, Alex had [tex]\( \$385 \)[/tex] in the beginning.
### Step 1: Define the Variables
Let [tex]\( T \)[/tex], [tex]\( N \)[/tex], and [tex]\( A \)[/tex] be the initial amounts of money Tierra, Nico, and Alex had, respectively. Let [tex]\( x \)[/tex] be the amount of money they each had left after spending.
### Step 2: Set Up the Equations
We know the total amount of money they had initially:
[tex]\[ T + N + A = 865 \][/tex]
We are given information about how much each person spent and how much they had left:
- Tierra spent [tex]\(\frac{2}{5}\)[/tex] of her money:
[tex]\[ T_{left} = T - \frac{2}{5}T = \frac{3}{5}T \][/tex]
- Nico spent [tex]\( \$40 \)[/tex]:
[tex]\[ N_{left} = N - 40 \][/tex]
- Alex spent twice as much as Tierra:
[tex]\[ A_{spent} = 2 \times \frac{2}{5}T = \frac{4}{5}T \][/tex]
So, Alex’s remaining money is:
[tex]\[ A_{left} = A - \frac{4}{5}T \][/tex]
Since after spending, they all had the same amount of money left:
[tex]\[ \frac{3}{5}T = N - 40 = A - \frac{4}{5}T \][/tex]
### Step 3: Solve the System of Equations
We now have three key equations:
[tex]\[ T + N + A = 865 \quad \text{(Equation 1)} \][/tex]
[tex]\[ \frac{3}{5}T = N - 40 \quad \text{(Equation 2)} \][/tex]
[tex]\[ \frac{3}{5}T = A - \frac{4}{5}T \quad \text{(Equation 3)} \][/tex]
#### Simplify Equation 3:
[tex]\[ \frac{3}{5}T + \frac{4}{5}T = A \][/tex]
[tex]\[ \frac{7}{5}T = A \][/tex]
[tex]\[ A = \frac{7}{5}T \quad \text{(Simplified form of Equation 3)} \][/tex]
#### Use Equation 2:
[tex]\[ N = \frac{3}{5}T + 40 \quad \text{(Rearranged form of Equation 2)} \][/tex]
#### Substitute [tex]\(N\)[/tex] and [tex]\(A\)[/tex] back into Equation 1:
[tex]\[ T + \left(\frac{3}{5}T + 40\right) + \frac{7}{5}T = 865 \][/tex]
[tex]\[ T + \frac{3}{5}T + 40 + \frac{7}{5}T = 865 \][/tex]
Combine like terms:
[tex]\[ T + \frac{3}{5}T + \frac{7}{5}T + 40 = 865 \][/tex]
[tex]\[ T + 2T + 40 = 865 \][/tex]
[tex]\[ 3T + 40 = 865 \][/tex]
Solve for [tex]\(T\)[/tex]:
[tex]\[ 3T = 825 \][/tex]
[tex]\[ T = 275 \][/tex]
Now use the value of [tex]\(T\)[/tex] to find [tex]\(N\)[/tex] and [tex]\(A\)[/tex]:
[tex]\[ N = \frac{3}{5} \times 275 + 40 \][/tex]
[tex]\[ N = 165 + 40 \][/tex]
[tex]\[ N = 205 \][/tex]
[tex]\[ A = \frac{7}{5} \times 275 \][/tex]
[tex]\[ A = 385 \][/tex]
### Conclusion
Therefore, Alex initially had:
[tex]\[ \boxed{385} \][/tex]
So, Alex had [tex]\( \$385 \)[/tex] in the beginning.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.