Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

5. Tierra, Nico, and Alex had [tex]$\$[/tex]865[tex]$ altogether. Tierra spent $[/tex]\frac{2}{5}[tex]$ of her money. Nico spent $[/tex]\[tex]$40$[/tex], and Alex spent twice as much as Tierra. If the three friends had the same amount of money left, how much money did Alex have in the beginning?

[tex]\[
\begin{array}{l}
T=\frac{3}{5}x \\
N=x-40
\end{array}
\][/tex]


Sagot :

To determine how much money Alex had initially, let’s go through the problem step by step.

### Step 1: Define the Variables
Let [tex]\( T \)[/tex], [tex]\( N \)[/tex], and [tex]\( A \)[/tex] be the initial amounts of money Tierra, Nico, and Alex had, respectively. Let [tex]\( x \)[/tex] be the amount of money they each had left after spending.

### Step 2: Set Up the Equations
We know the total amount of money they had initially:
[tex]\[ T + N + A = 865 \][/tex]

We are given information about how much each person spent and how much they had left:
- Tierra spent [tex]\(\frac{2}{5}\)[/tex] of her money:
[tex]\[ T_{left} = T - \frac{2}{5}T = \frac{3}{5}T \][/tex]
- Nico spent [tex]\( \$40 \)[/tex]:
[tex]\[ N_{left} = N - 40 \][/tex]
- Alex spent twice as much as Tierra:
[tex]\[ A_{spent} = 2 \times \frac{2}{5}T = \frac{4}{5}T \][/tex]
So, Alex’s remaining money is:
[tex]\[ A_{left} = A - \frac{4}{5}T \][/tex]

Since after spending, they all had the same amount of money left:
[tex]\[ \frac{3}{5}T = N - 40 = A - \frac{4}{5}T \][/tex]

### Step 3: Solve the System of Equations
We now have three key equations:
[tex]\[ T + N + A = 865 \quad \text{(Equation 1)} \][/tex]
[tex]\[ \frac{3}{5}T = N - 40 \quad \text{(Equation 2)} \][/tex]
[tex]\[ \frac{3}{5}T = A - \frac{4}{5}T \quad \text{(Equation 3)} \][/tex]

#### Simplify Equation 3:
[tex]\[ \frac{3}{5}T + \frac{4}{5}T = A \][/tex]
[tex]\[ \frac{7}{5}T = A \][/tex]
[tex]\[ A = \frac{7}{5}T \quad \text{(Simplified form of Equation 3)} \][/tex]

#### Use Equation 2:
[tex]\[ N = \frac{3}{5}T + 40 \quad \text{(Rearranged form of Equation 2)} \][/tex]

#### Substitute [tex]\(N\)[/tex] and [tex]\(A\)[/tex] back into Equation 1:
[tex]\[ T + \left(\frac{3}{5}T + 40\right) + \frac{7}{5}T = 865 \][/tex]
[tex]\[ T + \frac{3}{5}T + 40 + \frac{7}{5}T = 865 \][/tex]
Combine like terms:
[tex]\[ T + \frac{3}{5}T + \frac{7}{5}T + 40 = 865 \][/tex]
[tex]\[ T + 2T + 40 = 865 \][/tex]
[tex]\[ 3T + 40 = 865 \][/tex]
Solve for [tex]\(T\)[/tex]:
[tex]\[ 3T = 825 \][/tex]
[tex]\[ T = 275 \][/tex]

Now use the value of [tex]\(T\)[/tex] to find [tex]\(N\)[/tex] and [tex]\(A\)[/tex]:
[tex]\[ N = \frac{3}{5} \times 275 + 40 \][/tex]
[tex]\[ N = 165 + 40 \][/tex]
[tex]\[ N = 205 \][/tex]

[tex]\[ A = \frac{7}{5} \times 275 \][/tex]
[tex]\[ A = 385 \][/tex]

### Conclusion
Therefore, Alex initially had:
[tex]\[ \boxed{385} \][/tex]

So, Alex had [tex]\( \$385 \)[/tex] in the beginning.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.