Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To identify the domain and range of the function [tex]\( y = 3 \cdot 5^x \)[/tex], we need to analyze the behavior of the function and the values [tex]\( x \)[/tex] and [tex]\( y \)[/tex] can take.
### Domain
1. The expression [tex]\( 5^x \)[/tex] represents an exponential function where the base is 5 and the exponent is [tex]\( x \)[/tex].
2. In general, exponential functions such as [tex]\( 5^x \)[/tex] are defined for all real numbers [tex]\( x \)[/tex].
3. There are no restrictions on the values [tex]\( x \)[/tex] can take, meaning [tex]\( x \)[/tex] can be any real number.
Thus, the domain of the function [tex]\( y = 3 \cdot 5^x \)[/tex] is:
[tex]\[ \text{all real numbers} \][/tex]
### Range
1. To find the range, consider the output values of the function, i.e., the possible values of [tex]\( y \)[/tex].
2. The term [tex]\( 5^x \)[/tex] is positive for any real number [tex]\( x \)[/tex] (since 5 raised to any power is always positive).
3. Since [tex]\( y \)[/tex] is given by [tex]\( 3 \cdot 5^x \)[/tex], and [tex]\( 5^x \)[/tex] is always positive, multiplying by 3 (a positive constant) will also yield positive values.
4. Therefore, [tex]\( y \)[/tex] will always be positive for any real number [tex]\( x \)[/tex].
5. As there is no upper limit to the values [tex]\( 5^x \)[/tex] can take, [tex]\( y \)[/tex] can grow arbitrarily large.
Hence, the range of the function [tex]\( y = 3 \cdot 5^x \)[/tex] is:
[tex]\[ \text{positive real numbers} \][/tex]
Now we can summarize the results:
The domain of the function [tex]\( y = 3 \cdot 5^x \)[/tex] is:
[tex]\[ \text{all real numbers} \][/tex]
The range of the function [tex]\( y = 3 \cdot 5^x \)[/tex] is:
[tex]\[ \text{positive real numbers} \][/tex]
### Domain
1. The expression [tex]\( 5^x \)[/tex] represents an exponential function where the base is 5 and the exponent is [tex]\( x \)[/tex].
2. In general, exponential functions such as [tex]\( 5^x \)[/tex] are defined for all real numbers [tex]\( x \)[/tex].
3. There are no restrictions on the values [tex]\( x \)[/tex] can take, meaning [tex]\( x \)[/tex] can be any real number.
Thus, the domain of the function [tex]\( y = 3 \cdot 5^x \)[/tex] is:
[tex]\[ \text{all real numbers} \][/tex]
### Range
1. To find the range, consider the output values of the function, i.e., the possible values of [tex]\( y \)[/tex].
2. The term [tex]\( 5^x \)[/tex] is positive for any real number [tex]\( x \)[/tex] (since 5 raised to any power is always positive).
3. Since [tex]\( y \)[/tex] is given by [tex]\( 3 \cdot 5^x \)[/tex], and [tex]\( 5^x \)[/tex] is always positive, multiplying by 3 (a positive constant) will also yield positive values.
4. Therefore, [tex]\( y \)[/tex] will always be positive for any real number [tex]\( x \)[/tex].
5. As there is no upper limit to the values [tex]\( 5^x \)[/tex] can take, [tex]\( y \)[/tex] can grow arbitrarily large.
Hence, the range of the function [tex]\( y = 3 \cdot 5^x \)[/tex] is:
[tex]\[ \text{positive real numbers} \][/tex]
Now we can summarize the results:
The domain of the function [tex]\( y = 3 \cdot 5^x \)[/tex] is:
[tex]\[ \text{all real numbers} \][/tex]
The range of the function [tex]\( y = 3 \cdot 5^x \)[/tex] is:
[tex]\[ \text{positive real numbers} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.