At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Alright, let's solve this problem step by step.
Problem Statement:
On a number line, point F is at 4, and point G is at -2. Point H lies between point F and point G. The ratio of [tex]\( FH \)[/tex] to [tex]\( HG \)[/tex] is 3:9. We need to determine where point H lies on the number line.
Given Information:
- Coordinates of F: [tex]\( F = 4 \)[/tex]
- Coordinates of G: [tex]\( G = -2 \)[/tex]
- Ratio [tex]\( FH:HG = 3:9 \)[/tex]
Steps to Solve:
1. Length of the Line Segment FG:
The distance between points F and G is calculated by finding the absolute difference between the coordinates of F and G:
[tex]\[ FG = F - G = 4 - (-2) = 4 + 2 = 6 \][/tex]
2. Expressing the Ratio:
The ratio [tex]\( FH:HG = 3:9 \)[/tex]. This can be simplified to:
[tex]\[ \frac{FH}{HG} = \frac{3}{9} = \frac{1}{3} \][/tex]
Let's denote the ratio by [tex]\( k \)[/tex]. Therefore,
[tex]\[ FH = k \cdot 3 \quad \text{and} \quad HG = k \cdot 9 \][/tex]
3. Finding the Whole Length FG:
Since [tex]\( FG = FH + HG \)[/tex]:
[tex]\[ FG = k \cdot 3 + k \cdot 9 = k \cdot (3 + 9) = k \cdot 12 \][/tex]
Given that [tex]\( FG = 6 \)[/tex], we can solve for [tex]\( k \)[/tex]:
[tex]\[ 6 = k \cdot 12 \][/tex]
[tex]\[ k = \frac{6}{12} = 0.5 \][/tex]
4. Calculating FH:
Now that we have [tex]\( k = 0.5 \)[/tex], we can determine [tex]\( FH \)[/tex]:
[tex]\[ FH = 3 \cdot k = 3 \cdot 0.5 = 1.5 \][/tex]
5. Determining the Position of H:
Point H lies [tex]\( FH \)[/tex] units away from F towards G. Since [tex]\( FH = 1.5 \)[/tex]:
[tex]\[ H = F - FH = 4 - 1.5 = 2.5 \][/tex]
Therefore, point H lies at [tex]\( 2.5 \)[/tex] on the number line.
Final Answer:
Point H is at [tex]\( 2.5 \)[/tex] on the number line.
Problem Statement:
On a number line, point F is at 4, and point G is at -2. Point H lies between point F and point G. The ratio of [tex]\( FH \)[/tex] to [tex]\( HG \)[/tex] is 3:9. We need to determine where point H lies on the number line.
Given Information:
- Coordinates of F: [tex]\( F = 4 \)[/tex]
- Coordinates of G: [tex]\( G = -2 \)[/tex]
- Ratio [tex]\( FH:HG = 3:9 \)[/tex]
Steps to Solve:
1. Length of the Line Segment FG:
The distance between points F and G is calculated by finding the absolute difference between the coordinates of F and G:
[tex]\[ FG = F - G = 4 - (-2) = 4 + 2 = 6 \][/tex]
2. Expressing the Ratio:
The ratio [tex]\( FH:HG = 3:9 \)[/tex]. This can be simplified to:
[tex]\[ \frac{FH}{HG} = \frac{3}{9} = \frac{1}{3} \][/tex]
Let's denote the ratio by [tex]\( k \)[/tex]. Therefore,
[tex]\[ FH = k \cdot 3 \quad \text{and} \quad HG = k \cdot 9 \][/tex]
3. Finding the Whole Length FG:
Since [tex]\( FG = FH + HG \)[/tex]:
[tex]\[ FG = k \cdot 3 + k \cdot 9 = k \cdot (3 + 9) = k \cdot 12 \][/tex]
Given that [tex]\( FG = 6 \)[/tex], we can solve for [tex]\( k \)[/tex]:
[tex]\[ 6 = k \cdot 12 \][/tex]
[tex]\[ k = \frac{6}{12} = 0.5 \][/tex]
4. Calculating FH:
Now that we have [tex]\( k = 0.5 \)[/tex], we can determine [tex]\( FH \)[/tex]:
[tex]\[ FH = 3 \cdot k = 3 \cdot 0.5 = 1.5 \][/tex]
5. Determining the Position of H:
Point H lies [tex]\( FH \)[/tex] units away from F towards G. Since [tex]\( FH = 1.5 \)[/tex]:
[tex]\[ H = F - FH = 4 - 1.5 = 2.5 \][/tex]
Therefore, point H lies at [tex]\( 2.5 \)[/tex] on the number line.
Final Answer:
Point H is at [tex]\( 2.5 \)[/tex] on the number line.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.