Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Find the set of possible rational zeros of the given function.

[tex]\[ f(x) = 5x^3 - 8x^2 + 3 \][/tex]

The set of possible rational zeros of the given function is [tex]\(\{\square\}\)[/tex].

(Type integers or simplified fractions. Use a comma to separate answers as needed.)


Sagot :

To find the set of possible rational zeros for the polynomial function [tex]\( f(x) = 5x^3 - 8x^2 + 3 \)[/tex], we can apply the Rational Root Theorem. This theorem states that any rational root, written in the form [tex]\(\frac{p}{q}\)[/tex], must have [tex]\(p\)[/tex] as a factor of the constant term and [tex]\(q\)[/tex] as a factor of the leading coefficient.

1. Identify the constant term and the leading coefficient:
- The constant term (the term without [tex]\(x\)[/tex]) in [tex]\( f(x) = 5x^3 - 8x^2 + 3 \)[/tex] is 3.
- The leading coefficient (the coefficient of the highest power of [tex]\(x\)[/tex]) is 5.

2. Find the factors of the constant term (3):
- The factors of 3 are [tex]\(\pm 1, \pm 3\)[/tex].

3. Find the factors of the leading coefficient (5):
- The factors of 5 are [tex]\(\pm 1, \pm 5\)[/tex].

4. Form all possible fractions [tex]\(\frac{p}{q}\)[/tex] where [tex]\(p\)[/tex] is a factor of the constant term and [tex]\(q\)[/tex] is a factor of the leading coefficient:
- List of [tex]\(\frac{p}{q}\)[/tex] combinations:
[tex]\[ \frac{\pm 1}{\pm 1}, \frac{\pm 1}{\pm 5}, \frac{\pm 3}{\pm 1}, \frac{\pm 3}{\pm 5} \][/tex]

5. Simplify the fractions to obtain all unique values:

[tex]\[ \begin{align*} \frac{1}{1} &= 1 \\ \frac{-1}{1} &= -1 \\ \frac{1}{-1} &= 1 \\ \frac{-1}{-1} &= -1 \\ \frac{1}{5} &= 0.2 \\ \frac{-1}{5} &= -0.2 \\ \frac{1}{-5} &= -0.2 \\ \frac{-1}{-5} &= 0.2 \\ \frac{3}{1} &= 3 \\ \frac{-3}{1} &= -3 \\ \frac{3}{-1} &= -3 \\ \frac{-3}{-1} &= 3 \\ \frac{3}{5} &= 0.6 \\ \frac{-3}{5} &= -0.6 \\ \frac{3}{-5} &= -0.6 \\ \frac{-3}{-5} &= 0.6 \\ \end{align*} \][/tex]

Combining all unique values, we get the set of possible rational zeros:
[tex]\[ \{-3, -1, -\frac{3}{5}, -\frac{1}{5}, 0.2, 0.6, \frac{1}{5}, \frac{3}{5}, 3, 1\} \][/tex]

However, typically in simpler forms for rational expressions, we combine and remove duplicates, ensuring clarity:

[tex]\[ \{-3, -1, -0.6, -0.2, 0.2, 0.6, 1, 3 \} = \left\{-3, -1, -\frac{3}{5}, -\frac{1}{5}, \frac{1}{5}, \frac{3}{5}, 1, 3\right\} \][/tex]
Therefore, the set of possible rational zeros is:
[tex]\[ \{-3, -1, -\frac{3}{5}, -\frac{1}{5}, \frac{1}{5}, \frac{3}{5}, 1, 3\} \][/tex]