Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the set of possible rational zeros for the polynomial function [tex]\( f(x) = 5x^3 - 8x^2 + 3 \)[/tex], we can apply the Rational Root Theorem. This theorem states that any rational root, written in the form [tex]\(\frac{p}{q}\)[/tex], must have [tex]\(p\)[/tex] as a factor of the constant term and [tex]\(q\)[/tex] as a factor of the leading coefficient.
1. Identify the constant term and the leading coefficient:
- The constant term (the term without [tex]\(x\)[/tex]) in [tex]\( f(x) = 5x^3 - 8x^2 + 3 \)[/tex] is 3.
- The leading coefficient (the coefficient of the highest power of [tex]\(x\)[/tex]) is 5.
2. Find the factors of the constant term (3):
- The factors of 3 are [tex]\(\pm 1, \pm 3\)[/tex].
3. Find the factors of the leading coefficient (5):
- The factors of 5 are [tex]\(\pm 1, \pm 5\)[/tex].
4. Form all possible fractions [tex]\(\frac{p}{q}\)[/tex] where [tex]\(p\)[/tex] is a factor of the constant term and [tex]\(q\)[/tex] is a factor of the leading coefficient:
- List of [tex]\(\frac{p}{q}\)[/tex] combinations:
[tex]\[ \frac{\pm 1}{\pm 1}, \frac{\pm 1}{\pm 5}, \frac{\pm 3}{\pm 1}, \frac{\pm 3}{\pm 5} \][/tex]
5. Simplify the fractions to obtain all unique values:
[tex]\[ \begin{align*} \frac{1}{1} &= 1 \\ \frac{-1}{1} &= -1 \\ \frac{1}{-1} &= 1 \\ \frac{-1}{-1} &= -1 \\ \frac{1}{5} &= 0.2 \\ \frac{-1}{5} &= -0.2 \\ \frac{1}{-5} &= -0.2 \\ \frac{-1}{-5} &= 0.2 \\ \frac{3}{1} &= 3 \\ \frac{-3}{1} &= -3 \\ \frac{3}{-1} &= -3 \\ \frac{-3}{-1} &= 3 \\ \frac{3}{5} &= 0.6 \\ \frac{-3}{5} &= -0.6 \\ \frac{3}{-5} &= -0.6 \\ \frac{-3}{-5} &= 0.6 \\ \end{align*} \][/tex]
Combining all unique values, we get the set of possible rational zeros:
[tex]\[ \{-3, -1, -\frac{3}{5}, -\frac{1}{5}, 0.2, 0.6, \frac{1}{5}, \frac{3}{5}, 3, 1\} \][/tex]
However, typically in simpler forms for rational expressions, we combine and remove duplicates, ensuring clarity:
[tex]\[ \{-3, -1, -0.6, -0.2, 0.2, 0.6, 1, 3 \} = \left\{-3, -1, -\frac{3}{5}, -\frac{1}{5}, \frac{1}{5}, \frac{3}{5}, 1, 3\right\} \][/tex]
Therefore, the set of possible rational zeros is:
[tex]\[ \{-3, -1, -\frac{3}{5}, -\frac{1}{5}, \frac{1}{5}, \frac{3}{5}, 1, 3\} \][/tex]
1. Identify the constant term and the leading coefficient:
- The constant term (the term without [tex]\(x\)[/tex]) in [tex]\( f(x) = 5x^3 - 8x^2 + 3 \)[/tex] is 3.
- The leading coefficient (the coefficient of the highest power of [tex]\(x\)[/tex]) is 5.
2. Find the factors of the constant term (3):
- The factors of 3 are [tex]\(\pm 1, \pm 3\)[/tex].
3. Find the factors of the leading coefficient (5):
- The factors of 5 are [tex]\(\pm 1, \pm 5\)[/tex].
4. Form all possible fractions [tex]\(\frac{p}{q}\)[/tex] where [tex]\(p\)[/tex] is a factor of the constant term and [tex]\(q\)[/tex] is a factor of the leading coefficient:
- List of [tex]\(\frac{p}{q}\)[/tex] combinations:
[tex]\[ \frac{\pm 1}{\pm 1}, \frac{\pm 1}{\pm 5}, \frac{\pm 3}{\pm 1}, \frac{\pm 3}{\pm 5} \][/tex]
5. Simplify the fractions to obtain all unique values:
[tex]\[ \begin{align*} \frac{1}{1} &= 1 \\ \frac{-1}{1} &= -1 \\ \frac{1}{-1} &= 1 \\ \frac{-1}{-1} &= -1 \\ \frac{1}{5} &= 0.2 \\ \frac{-1}{5} &= -0.2 \\ \frac{1}{-5} &= -0.2 \\ \frac{-1}{-5} &= 0.2 \\ \frac{3}{1} &= 3 \\ \frac{-3}{1} &= -3 \\ \frac{3}{-1} &= -3 \\ \frac{-3}{-1} &= 3 \\ \frac{3}{5} &= 0.6 \\ \frac{-3}{5} &= -0.6 \\ \frac{3}{-5} &= -0.6 \\ \frac{-3}{-5} &= 0.6 \\ \end{align*} \][/tex]
Combining all unique values, we get the set of possible rational zeros:
[tex]\[ \{-3, -1, -\frac{3}{5}, -\frac{1}{5}, 0.2, 0.6, \frac{1}{5}, \frac{3}{5}, 3, 1\} \][/tex]
However, typically in simpler forms for rational expressions, we combine and remove duplicates, ensuring clarity:
[tex]\[ \{-3, -1, -0.6, -0.2, 0.2, 0.6, 1, 3 \} = \left\{-3, -1, -\frac{3}{5}, -\frac{1}{5}, \frac{1}{5}, \frac{3}{5}, 1, 3\right\} \][/tex]
Therefore, the set of possible rational zeros is:
[tex]\[ \{-3, -1, -\frac{3}{5}, -\frac{1}{5}, \frac{1}{5}, \frac{3}{5}, 1, 3\} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.