At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Find the set of possible rational zeros of the given function.

[tex]\[ f(x) = 5x^3 - 8x^2 + 3 \][/tex]

The set of possible rational zeros of the given function is [tex]\(\{\square\}\)[/tex].

(Type integers or simplified fractions. Use a comma to separate answers as needed.)


Sagot :

To find the set of possible rational zeros for the polynomial function [tex]\( f(x) = 5x^3 - 8x^2 + 3 \)[/tex], we can apply the Rational Root Theorem. This theorem states that any rational root, written in the form [tex]\(\frac{p}{q}\)[/tex], must have [tex]\(p\)[/tex] as a factor of the constant term and [tex]\(q\)[/tex] as a factor of the leading coefficient.

1. Identify the constant term and the leading coefficient:
- The constant term (the term without [tex]\(x\)[/tex]) in [tex]\( f(x) = 5x^3 - 8x^2 + 3 \)[/tex] is 3.
- The leading coefficient (the coefficient of the highest power of [tex]\(x\)[/tex]) is 5.

2. Find the factors of the constant term (3):
- The factors of 3 are [tex]\(\pm 1, \pm 3\)[/tex].

3. Find the factors of the leading coefficient (5):
- The factors of 5 are [tex]\(\pm 1, \pm 5\)[/tex].

4. Form all possible fractions [tex]\(\frac{p}{q}\)[/tex] where [tex]\(p\)[/tex] is a factor of the constant term and [tex]\(q\)[/tex] is a factor of the leading coefficient:
- List of [tex]\(\frac{p}{q}\)[/tex] combinations:
[tex]\[ \frac{\pm 1}{\pm 1}, \frac{\pm 1}{\pm 5}, \frac{\pm 3}{\pm 1}, \frac{\pm 3}{\pm 5} \][/tex]

5. Simplify the fractions to obtain all unique values:

[tex]\[ \begin{align*} \frac{1}{1} &= 1 \\ \frac{-1}{1} &= -1 \\ \frac{1}{-1} &= 1 \\ \frac{-1}{-1} &= -1 \\ \frac{1}{5} &= 0.2 \\ \frac{-1}{5} &= -0.2 \\ \frac{1}{-5} &= -0.2 \\ \frac{-1}{-5} &= 0.2 \\ \frac{3}{1} &= 3 \\ \frac{-3}{1} &= -3 \\ \frac{3}{-1} &= -3 \\ \frac{-3}{-1} &= 3 \\ \frac{3}{5} &= 0.6 \\ \frac{-3}{5} &= -0.6 \\ \frac{3}{-5} &= -0.6 \\ \frac{-3}{-5} &= 0.6 \\ \end{align*} \][/tex]

Combining all unique values, we get the set of possible rational zeros:
[tex]\[ \{-3, -1, -\frac{3}{5}, -\frac{1}{5}, 0.2, 0.6, \frac{1}{5}, \frac{3}{5}, 3, 1\} \][/tex]

However, typically in simpler forms for rational expressions, we combine and remove duplicates, ensuring clarity:

[tex]\[ \{-3, -1, -0.6, -0.2, 0.2, 0.6, 1, 3 \} = \left\{-3, -1, -\frac{3}{5}, -\frac{1}{5}, \frac{1}{5}, \frac{3}{5}, 1, 3\right\} \][/tex]
Therefore, the set of possible rational zeros is:
[tex]\[ \{-3, -1, -\frac{3}{5}, -\frac{1}{5}, \frac{1}{5}, \frac{3}{5}, 1, 3\} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.