Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the vertical asymptotes of the function [tex]\( f(x) = \frac{x-9}{x^3 - 81x} \)[/tex], we need to find the values of [tex]\( x \)[/tex] that make the denominator zero. These values of [tex]\( x \)[/tex] will potentially be vertical asymptotes as long as they do not cancel out with zeros in the numerator.
Let's go through the process step-by-step:
1. Identify the function and its components:
- The function is [tex]\( f(x) = \frac{x-9}{x^3 - 81x} \)[/tex].
- The numerator is [tex]\( x-9 \)[/tex].
- The denominator is [tex]\( x^3 - 81x \)[/tex].
2. Set the denominator equal to zero and solve for [tex]\( x \)[/tex]:
- [tex]\( x^3 - 81x = 0 \)[/tex].
- Factor out the common term in the denominator:
[tex]\[ x(x^2 - 81) = 0 \][/tex]
- Notice that [tex]\( x^2 - 81 \)[/tex] is a difference of squares. Factor it further:
[tex]\[ x(x - 9)(x + 9) = 0 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
- Set each factor equal to zero:
[tex]\[ x = 0 \][/tex]
[tex]\[ x - 9 = 0 \implies x = 9 \][/tex]
[tex]\[ x + 9 = 0 \implies x = -9 \][/tex]
4. Determine which of these values are vertical asymptotes:
- Vertical asymptotes occur where the denominator is zero but the numerator is not zero.
- For [tex]\( x = 9 \)[/tex]:
- Substitute [tex]\( x = 9 \)[/tex] into the numerator: [tex]\( 9 - 9 = 0 \)[/tex]. The numerator is zero, so [tex]\( x = 9 \)[/tex] is not a vertical asymptote.
- For [tex]\( x = -9 \)[/tex]:
- Substitute [tex]\( x = -9 \)[/tex] into the numerator: [tex]\( -9 - 9 = -18 \)[/tex]. The numerator is not zero, so [tex]\( x = -9 \)[/tex] is a vertical asymptote.
- For [tex]\( x = 0 \)[/tex]:
- Substitute [tex]\( x = 0 \)[/tex] into the numerator: [tex]\( 0 - 9 = -9 \)[/tex]. The numerator is not zero, so [tex]\( x = 0 \)[/tex] is a vertical asymptote.
Therefore, the vertical asymptotes of [tex]\( f(x) = \frac{x-9}{x^3 - 81x} \)[/tex] are [tex]\( x = 0 \)[/tex] and [tex]\( x = -9 \)[/tex].
So the answer is:
- [tex]\( x = -9 \)[/tex]
- [tex]\( x = 0 \)[/tex]
These correspond to the vertical asymptotes correctly.
Let's go through the process step-by-step:
1. Identify the function and its components:
- The function is [tex]\( f(x) = \frac{x-9}{x^3 - 81x} \)[/tex].
- The numerator is [tex]\( x-9 \)[/tex].
- The denominator is [tex]\( x^3 - 81x \)[/tex].
2. Set the denominator equal to zero and solve for [tex]\( x \)[/tex]:
- [tex]\( x^3 - 81x = 0 \)[/tex].
- Factor out the common term in the denominator:
[tex]\[ x(x^2 - 81) = 0 \][/tex]
- Notice that [tex]\( x^2 - 81 \)[/tex] is a difference of squares. Factor it further:
[tex]\[ x(x - 9)(x + 9) = 0 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
- Set each factor equal to zero:
[tex]\[ x = 0 \][/tex]
[tex]\[ x - 9 = 0 \implies x = 9 \][/tex]
[tex]\[ x + 9 = 0 \implies x = -9 \][/tex]
4. Determine which of these values are vertical asymptotes:
- Vertical asymptotes occur where the denominator is zero but the numerator is not zero.
- For [tex]\( x = 9 \)[/tex]:
- Substitute [tex]\( x = 9 \)[/tex] into the numerator: [tex]\( 9 - 9 = 0 \)[/tex]. The numerator is zero, so [tex]\( x = 9 \)[/tex] is not a vertical asymptote.
- For [tex]\( x = -9 \)[/tex]:
- Substitute [tex]\( x = -9 \)[/tex] into the numerator: [tex]\( -9 - 9 = -18 \)[/tex]. The numerator is not zero, so [tex]\( x = -9 \)[/tex] is a vertical asymptote.
- For [tex]\( x = 0 \)[/tex]:
- Substitute [tex]\( x = 0 \)[/tex] into the numerator: [tex]\( 0 - 9 = -9 \)[/tex]. The numerator is not zero, so [tex]\( x = 0 \)[/tex] is a vertical asymptote.
Therefore, the vertical asymptotes of [tex]\( f(x) = \frac{x-9}{x^3 - 81x} \)[/tex] are [tex]\( x = 0 \)[/tex] and [tex]\( x = -9 \)[/tex].
So the answer is:
- [tex]\( x = -9 \)[/tex]
- [tex]\( x = 0 \)[/tex]
These correspond to the vertical asymptotes correctly.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.