Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the [tex]\( y \)[/tex]-intercept of the line perpendicular to [tex]\( y = \frac{3}{4}x + 3 \)[/tex] that includes the point [tex]\((3, 1)\)[/tex], follow these steps:
1. Find the Slope of the Perpendicular Line:
- The given line has a slope [tex]\( m = \frac{3}{4} \)[/tex].
- The slope of a line perpendicular to another is the negative reciprocal of the original line's slope.
- The negative reciprocal of [tex]\( \frac{3}{4} \)[/tex] is [tex]\( -\frac{4}{3} \)[/tex].
2. Use the Point-Slope Form:
- The point-slope form of a line is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope.
- Here, the point is [tex]\( (3, 1) \)[/tex] and the slope is [tex]\( -\frac{4}{3} \)[/tex].
- Plugging in the values, we get: [tex]\[ y - 1 = -\frac{4}{3}(x - 3) \][/tex]
3. Convert to Slope-Intercept Form:
- Simplify the equation to find the [tex]\( y \)[/tex]-intercept ([tex]\( b \)[/tex]):
[tex]\[ y - 1 = -\frac{4}{3}(x - 3) \][/tex]
Expand the right-hand side:
[tex]\[ y - 1 = -\frac{4}{3}x + 4 \][/tex]
Adding 1 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{4}{3}x + 4 + 1 \][/tex]
Simplify the constant term:
[tex]\[ y = -\frac{4}{3}x + 5 \][/tex]
4. Identify the [tex]\( y \)[/tex]-Intercept:
- The slope-intercept form of a line is [tex]\( y = mx + b \)[/tex], where [tex]\( b \)[/tex] is the [tex]\( y \)[/tex]-intercept.
- From the simplified equation [tex]\( y = -\frac{4}{3}x + 5 \)[/tex], the [tex]\( y \)[/tex]-intercept [tex]\( b \)[/tex] is 5.
Hence, the [tex]\( y \)[/tex]-intercept of the line perpendicular to [tex]\( y = \frac{3}{4}x + 3 \)[/tex] that includes the point [tex]\( (3, 1) \)[/tex] is:
[tex]\[ \boxed{5} \][/tex]
1. Find the Slope of the Perpendicular Line:
- The given line has a slope [tex]\( m = \frac{3}{4} \)[/tex].
- The slope of a line perpendicular to another is the negative reciprocal of the original line's slope.
- The negative reciprocal of [tex]\( \frac{3}{4} \)[/tex] is [tex]\( -\frac{4}{3} \)[/tex].
2. Use the Point-Slope Form:
- The point-slope form of a line is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope.
- Here, the point is [tex]\( (3, 1) \)[/tex] and the slope is [tex]\( -\frac{4}{3} \)[/tex].
- Plugging in the values, we get: [tex]\[ y - 1 = -\frac{4}{3}(x - 3) \][/tex]
3. Convert to Slope-Intercept Form:
- Simplify the equation to find the [tex]\( y \)[/tex]-intercept ([tex]\( b \)[/tex]):
[tex]\[ y - 1 = -\frac{4}{3}(x - 3) \][/tex]
Expand the right-hand side:
[tex]\[ y - 1 = -\frac{4}{3}x + 4 \][/tex]
Adding 1 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{4}{3}x + 4 + 1 \][/tex]
Simplify the constant term:
[tex]\[ y = -\frac{4}{3}x + 5 \][/tex]
4. Identify the [tex]\( y \)[/tex]-Intercept:
- The slope-intercept form of a line is [tex]\( y = mx + b \)[/tex], where [tex]\( b \)[/tex] is the [tex]\( y \)[/tex]-intercept.
- From the simplified equation [tex]\( y = -\frac{4}{3}x + 5 \)[/tex], the [tex]\( y \)[/tex]-intercept [tex]\( b \)[/tex] is 5.
Hence, the [tex]\( y \)[/tex]-intercept of the line perpendicular to [tex]\( y = \frac{3}{4}x + 3 \)[/tex] that includes the point [tex]\( (3, 1) \)[/tex] is:
[tex]\[ \boxed{5} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.