Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the [tex]\( y \)[/tex]-intercept of the line perpendicular to [tex]\( y = \frac{3}{4}x + 3 \)[/tex] that includes the point [tex]\((3, 1)\)[/tex], follow these steps:
1. Find the Slope of the Perpendicular Line:
- The given line has a slope [tex]\( m = \frac{3}{4} \)[/tex].
- The slope of a line perpendicular to another is the negative reciprocal of the original line's slope.
- The negative reciprocal of [tex]\( \frac{3}{4} \)[/tex] is [tex]\( -\frac{4}{3} \)[/tex].
2. Use the Point-Slope Form:
- The point-slope form of a line is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope.
- Here, the point is [tex]\( (3, 1) \)[/tex] and the slope is [tex]\( -\frac{4}{3} \)[/tex].
- Plugging in the values, we get: [tex]\[ y - 1 = -\frac{4}{3}(x - 3) \][/tex]
3. Convert to Slope-Intercept Form:
- Simplify the equation to find the [tex]\( y \)[/tex]-intercept ([tex]\( b \)[/tex]):
[tex]\[ y - 1 = -\frac{4}{3}(x - 3) \][/tex]
Expand the right-hand side:
[tex]\[ y - 1 = -\frac{4}{3}x + 4 \][/tex]
Adding 1 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{4}{3}x + 4 + 1 \][/tex]
Simplify the constant term:
[tex]\[ y = -\frac{4}{3}x + 5 \][/tex]
4. Identify the [tex]\( y \)[/tex]-Intercept:
- The slope-intercept form of a line is [tex]\( y = mx + b \)[/tex], where [tex]\( b \)[/tex] is the [tex]\( y \)[/tex]-intercept.
- From the simplified equation [tex]\( y = -\frac{4}{3}x + 5 \)[/tex], the [tex]\( y \)[/tex]-intercept [tex]\( b \)[/tex] is 5.
Hence, the [tex]\( y \)[/tex]-intercept of the line perpendicular to [tex]\( y = \frac{3}{4}x + 3 \)[/tex] that includes the point [tex]\( (3, 1) \)[/tex] is:
[tex]\[ \boxed{5} \][/tex]
1. Find the Slope of the Perpendicular Line:
- The given line has a slope [tex]\( m = \frac{3}{4} \)[/tex].
- The slope of a line perpendicular to another is the negative reciprocal of the original line's slope.
- The negative reciprocal of [tex]\( \frac{3}{4} \)[/tex] is [tex]\( -\frac{4}{3} \)[/tex].
2. Use the Point-Slope Form:
- The point-slope form of a line is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope.
- Here, the point is [tex]\( (3, 1) \)[/tex] and the slope is [tex]\( -\frac{4}{3} \)[/tex].
- Plugging in the values, we get: [tex]\[ y - 1 = -\frac{4}{3}(x - 3) \][/tex]
3. Convert to Slope-Intercept Form:
- Simplify the equation to find the [tex]\( y \)[/tex]-intercept ([tex]\( b \)[/tex]):
[tex]\[ y - 1 = -\frac{4}{3}(x - 3) \][/tex]
Expand the right-hand side:
[tex]\[ y - 1 = -\frac{4}{3}x + 4 \][/tex]
Adding 1 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{4}{3}x + 4 + 1 \][/tex]
Simplify the constant term:
[tex]\[ y = -\frac{4}{3}x + 5 \][/tex]
4. Identify the [tex]\( y \)[/tex]-Intercept:
- The slope-intercept form of a line is [tex]\( y = mx + b \)[/tex], where [tex]\( b \)[/tex] is the [tex]\( y \)[/tex]-intercept.
- From the simplified equation [tex]\( y = -\frac{4}{3}x + 5 \)[/tex], the [tex]\( y \)[/tex]-intercept [tex]\( b \)[/tex] is 5.
Hence, the [tex]\( y \)[/tex]-intercept of the line perpendicular to [tex]\( y = \frac{3}{4}x + 3 \)[/tex] that includes the point [tex]\( (3, 1) \)[/tex] is:
[tex]\[ \boxed{5} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.