Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the [tex]\( y \)[/tex]-intercept of the line perpendicular to [tex]\( y = \frac{3}{4}x + 3 \)[/tex] that includes the point [tex]\((3, 1)\)[/tex], follow these steps:
1. Find the Slope of the Perpendicular Line:
- The given line has a slope [tex]\( m = \frac{3}{4} \)[/tex].
- The slope of a line perpendicular to another is the negative reciprocal of the original line's slope.
- The negative reciprocal of [tex]\( \frac{3}{4} \)[/tex] is [tex]\( -\frac{4}{3} \)[/tex].
2. Use the Point-Slope Form:
- The point-slope form of a line is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope.
- Here, the point is [tex]\( (3, 1) \)[/tex] and the slope is [tex]\( -\frac{4}{3} \)[/tex].
- Plugging in the values, we get: [tex]\[ y - 1 = -\frac{4}{3}(x - 3) \][/tex]
3. Convert to Slope-Intercept Form:
- Simplify the equation to find the [tex]\( y \)[/tex]-intercept ([tex]\( b \)[/tex]):
[tex]\[ y - 1 = -\frac{4}{3}(x - 3) \][/tex]
Expand the right-hand side:
[tex]\[ y - 1 = -\frac{4}{3}x + 4 \][/tex]
Adding 1 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{4}{3}x + 4 + 1 \][/tex]
Simplify the constant term:
[tex]\[ y = -\frac{4}{3}x + 5 \][/tex]
4. Identify the [tex]\( y \)[/tex]-Intercept:
- The slope-intercept form of a line is [tex]\( y = mx + b \)[/tex], where [tex]\( b \)[/tex] is the [tex]\( y \)[/tex]-intercept.
- From the simplified equation [tex]\( y = -\frac{4}{3}x + 5 \)[/tex], the [tex]\( y \)[/tex]-intercept [tex]\( b \)[/tex] is 5.
Hence, the [tex]\( y \)[/tex]-intercept of the line perpendicular to [tex]\( y = \frac{3}{4}x + 3 \)[/tex] that includes the point [tex]\( (3, 1) \)[/tex] is:
[tex]\[ \boxed{5} \][/tex]
1. Find the Slope of the Perpendicular Line:
- The given line has a slope [tex]\( m = \frac{3}{4} \)[/tex].
- The slope of a line perpendicular to another is the negative reciprocal of the original line's slope.
- The negative reciprocal of [tex]\( \frac{3}{4} \)[/tex] is [tex]\( -\frac{4}{3} \)[/tex].
2. Use the Point-Slope Form:
- The point-slope form of a line is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope.
- Here, the point is [tex]\( (3, 1) \)[/tex] and the slope is [tex]\( -\frac{4}{3} \)[/tex].
- Plugging in the values, we get: [tex]\[ y - 1 = -\frac{4}{3}(x - 3) \][/tex]
3. Convert to Slope-Intercept Form:
- Simplify the equation to find the [tex]\( y \)[/tex]-intercept ([tex]\( b \)[/tex]):
[tex]\[ y - 1 = -\frac{4}{3}(x - 3) \][/tex]
Expand the right-hand side:
[tex]\[ y - 1 = -\frac{4}{3}x + 4 \][/tex]
Adding 1 to both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = -\frac{4}{3}x + 4 + 1 \][/tex]
Simplify the constant term:
[tex]\[ y = -\frac{4}{3}x + 5 \][/tex]
4. Identify the [tex]\( y \)[/tex]-Intercept:
- The slope-intercept form of a line is [tex]\( y = mx + b \)[/tex], where [tex]\( b \)[/tex] is the [tex]\( y \)[/tex]-intercept.
- From the simplified equation [tex]\( y = -\frac{4}{3}x + 5 \)[/tex], the [tex]\( y \)[/tex]-intercept [tex]\( b \)[/tex] is 5.
Hence, the [tex]\( y \)[/tex]-intercept of the line perpendicular to [tex]\( y = \frac{3}{4}x + 3 \)[/tex] that includes the point [tex]\( (3, 1) \)[/tex] is:
[tex]\[ \boxed{5} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.