Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's address each part one by one, providing a detailed, step-by-step solution:
### Part (a): Converting set-builder form to roster form
Set-builder form: [tex]\(\{x \mid x \text{ is an integer and } 5 < x < 9\}\)[/tex]
The given set-builder form states that [tex]\(x\)[/tex] is an integer and lies strictly between 5 and 9. To convert this into roster form, we need to list all integer values that satisfy this condition.
- [tex]\(x\)[/tex] must be greater than 5 and less than 9.
- The integers between 5 and 9 (not inclusive of 5 and 9) are [tex]\(6, 7,\)[/tex] and [tex]\(8\)[/tex].
Thus, the roster form of the given set is:
[tex]\[\{6, 7, 8\}\][/tex]
### Part (b): Converting roster form to set-builder form
Roster form: [tex]\(\{-5, -4, -3, -2, \ldots\}\)[/tex]
The given roster form starts at [tex]\(-5\)[/tex] and includes the subsequent integers increasing towards positive infinity. To convert this into set-builder form, we use a general expression that defines all integers starting from [tex]\(-5\)[/tex] and going upwards.
- The pattern starts at [tex]\(-5\)[/tex] and includes every integer greater than or equal to [tex]\(-5\)[/tex].
The set-builder form can be written as:
[tex]\[\{x \mid x \text{ is an integer and } x \geq -5\}\][/tex]
### Summary:
(a) Roster form: [tex]\(\{6, 7, 8\}\)[/tex]
(b) Set-builder form: [tex]\(\{x \mid x \text{ is an integer and } x \geq -5\}\)[/tex]
### Part (a): Converting set-builder form to roster form
Set-builder form: [tex]\(\{x \mid x \text{ is an integer and } 5 < x < 9\}\)[/tex]
The given set-builder form states that [tex]\(x\)[/tex] is an integer and lies strictly between 5 and 9. To convert this into roster form, we need to list all integer values that satisfy this condition.
- [tex]\(x\)[/tex] must be greater than 5 and less than 9.
- The integers between 5 and 9 (not inclusive of 5 and 9) are [tex]\(6, 7,\)[/tex] and [tex]\(8\)[/tex].
Thus, the roster form of the given set is:
[tex]\[\{6, 7, 8\}\][/tex]
### Part (b): Converting roster form to set-builder form
Roster form: [tex]\(\{-5, -4, -3, -2, \ldots\}\)[/tex]
The given roster form starts at [tex]\(-5\)[/tex] and includes the subsequent integers increasing towards positive infinity. To convert this into set-builder form, we use a general expression that defines all integers starting from [tex]\(-5\)[/tex] and going upwards.
- The pattern starts at [tex]\(-5\)[/tex] and includes every integer greater than or equal to [tex]\(-5\)[/tex].
The set-builder form can be written as:
[tex]\[\{x \mid x \text{ is an integer and } x \geq -5\}\][/tex]
### Summary:
(a) Roster form: [tex]\(\{6, 7, 8\}\)[/tex]
(b) Set-builder form: [tex]\(\{x \mid x \text{ is an integer and } x \geq -5\}\)[/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.