At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

Identify which of the following equations represent functions. Select all that apply.

A. [tex] y = 4x + 13 [/tex]
B. [tex] x = 5 [/tex]
C. [tex] x^2 + y^2 = 16 [/tex]
D. [tex] y^2 = \frac{1}{3}x - 6 [/tex]
E. [tex] y = 3x^2 - x - 1 [/tex]

Sagot :

To determine which of the given equations represent functions, we need to check if each equation passes the vertical line test. Specifically, for an equation to be a function, each value of [tex]\( x \)[/tex] must correspond to exactly one value of [tex]\( y \)[/tex].

Let's analyze each equation in detail:

1. Equation: [tex]\( y = 4x + 13 \)[/tex]
- This is a linear equation in the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] and [tex]\( b \)[/tex] are constants.
- For any given [tex]\( x \)[/tex], there is exactly one corresponding [tex]\( y \)[/tex].
- Conclusion: This is a function.

2. Equation: [tex]\( x = 5 \)[/tex]
- This represents a vertical line at [tex]\( x = 5 \)[/tex].
- A vertical line does not satisfy the definition of a function, as it has an infinite number of [tex]\( y \)[/tex]-values for a single [tex]\( x \)[/tex]-value.
- Conclusion: This is not a function.

3. Equation: [tex]\( x^2 + y^2 = 16 \)[/tex]
- This is the equation of a circle with a radius of 4 and centered at the origin (0, 0).
- For certain values of [tex]\( x \)[/tex], there will be two corresponding [tex]\( y \)[/tex]-values (e.g., at [tex]\( x = 0 \)[/tex], [tex]\( y \)[/tex] can be [tex]\( 4 \)[/tex] or [tex]\( -4 \)[/tex]).
- Conclusion: This is not a function.

4. Equation: [tex]\( y^2 = \frac{1}{3}x - 6 \)[/tex]
- Solving for [tex]\( y \)[/tex], we get [tex]\( y = \pm \sqrt{\frac{1}{3}x - 6} \)[/tex].
- For certain values of [tex]\( x \)[/tex], there will be two corresponding [tex]\( y \)[/tex]-values (one positive and one negative).
- Conclusion: This is not a function.

5. Equation: [tex]\( y = 3x^2 - x - 1 \)[/tex]
- This is a quadratic equation in [tex]\( x \)[/tex] with the general form [tex]\( y = ax^2 + bx + c \)[/tex], where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are constants.
- For any given [tex]\( x \)[/tex], there is exactly one corresponding [tex]\( y \)[/tex].
- Conclusion: This is a function.

Based on this analysis, the equations that represent functions are:
1. [tex]\( y = 4x + 13 \)[/tex]
5. [tex]\( y = 3x^2 - x - 1 \)[/tex]

Therefore, the indices of the equations that are functions are [tex]\([1, 5]\)[/tex].