Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which of the given equations represent functions, we need to check if each equation passes the vertical line test. Specifically, for an equation to be a function, each value of [tex]\( x \)[/tex] must correspond to exactly one value of [tex]\( y \)[/tex].
Let's analyze each equation in detail:
1. Equation: [tex]\( y = 4x + 13 \)[/tex]
- This is a linear equation in the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] and [tex]\( b \)[/tex] are constants.
- For any given [tex]\( x \)[/tex], there is exactly one corresponding [tex]\( y \)[/tex].
- Conclusion: This is a function.
2. Equation: [tex]\( x = 5 \)[/tex]
- This represents a vertical line at [tex]\( x = 5 \)[/tex].
- A vertical line does not satisfy the definition of a function, as it has an infinite number of [tex]\( y \)[/tex]-values for a single [tex]\( x \)[/tex]-value.
- Conclusion: This is not a function.
3. Equation: [tex]\( x^2 + y^2 = 16 \)[/tex]
- This is the equation of a circle with a radius of 4 and centered at the origin (0, 0).
- For certain values of [tex]\( x \)[/tex], there will be two corresponding [tex]\( y \)[/tex]-values (e.g., at [tex]\( x = 0 \)[/tex], [tex]\( y \)[/tex] can be [tex]\( 4 \)[/tex] or [tex]\( -4 \)[/tex]).
- Conclusion: This is not a function.
4. Equation: [tex]\( y^2 = \frac{1}{3}x - 6 \)[/tex]
- Solving for [tex]\( y \)[/tex], we get [tex]\( y = \pm \sqrt{\frac{1}{3}x - 6} \)[/tex].
- For certain values of [tex]\( x \)[/tex], there will be two corresponding [tex]\( y \)[/tex]-values (one positive and one negative).
- Conclusion: This is not a function.
5. Equation: [tex]\( y = 3x^2 - x - 1 \)[/tex]
- This is a quadratic equation in [tex]\( x \)[/tex] with the general form [tex]\( y = ax^2 + bx + c \)[/tex], where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are constants.
- For any given [tex]\( x \)[/tex], there is exactly one corresponding [tex]\( y \)[/tex].
- Conclusion: This is a function.
Based on this analysis, the equations that represent functions are:
1. [tex]\( y = 4x + 13 \)[/tex]
5. [tex]\( y = 3x^2 - x - 1 \)[/tex]
Therefore, the indices of the equations that are functions are [tex]\([1, 5]\)[/tex].
Let's analyze each equation in detail:
1. Equation: [tex]\( y = 4x + 13 \)[/tex]
- This is a linear equation in the form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] and [tex]\( b \)[/tex] are constants.
- For any given [tex]\( x \)[/tex], there is exactly one corresponding [tex]\( y \)[/tex].
- Conclusion: This is a function.
2. Equation: [tex]\( x = 5 \)[/tex]
- This represents a vertical line at [tex]\( x = 5 \)[/tex].
- A vertical line does not satisfy the definition of a function, as it has an infinite number of [tex]\( y \)[/tex]-values for a single [tex]\( x \)[/tex]-value.
- Conclusion: This is not a function.
3. Equation: [tex]\( x^2 + y^2 = 16 \)[/tex]
- This is the equation of a circle with a radius of 4 and centered at the origin (0, 0).
- For certain values of [tex]\( x \)[/tex], there will be two corresponding [tex]\( y \)[/tex]-values (e.g., at [tex]\( x = 0 \)[/tex], [tex]\( y \)[/tex] can be [tex]\( 4 \)[/tex] or [tex]\( -4 \)[/tex]).
- Conclusion: This is not a function.
4. Equation: [tex]\( y^2 = \frac{1}{3}x - 6 \)[/tex]
- Solving for [tex]\( y \)[/tex], we get [tex]\( y = \pm \sqrt{\frac{1}{3}x - 6} \)[/tex].
- For certain values of [tex]\( x \)[/tex], there will be two corresponding [tex]\( y \)[/tex]-values (one positive and one negative).
- Conclusion: This is not a function.
5. Equation: [tex]\( y = 3x^2 - x - 1 \)[/tex]
- This is a quadratic equation in [tex]\( x \)[/tex] with the general form [tex]\( y = ax^2 + bx + c \)[/tex], where [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex] are constants.
- For any given [tex]\( x \)[/tex], there is exactly one corresponding [tex]\( y \)[/tex].
- Conclusion: This is a function.
Based on this analysis, the equations that represent functions are:
1. [tex]\( y = 4x + 13 \)[/tex]
5. [tex]\( y = 3x^2 - x - 1 \)[/tex]
Therefore, the indices of the equations that are functions are [tex]\([1, 5]\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.