Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To find the enthalpy of combustion per mole of propane ([tex]\( C_3H_8 \)[/tex]), we need to use the enthalpy changes of formation ([tex]\( \Delta H_f \)[/tex]) for the reactants and products in the balanced chemical equation:
[tex]\[ C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g) \][/tex]
Given data:
- [tex]\(\Delta H_f \)[/tex] of [tex]\(C_3H_8 \)[/tex] = -103.8 kJ/mol
- [tex]\(\Delta H_f \)[/tex] of [tex]\(CO_2 \)[/tex] = -393.5 kJ/mol
- [tex]\(\Delta H_f \)[/tex] of [tex]\(H_2O \)[/tex] = -241.82 kJ/mol
To find the enthalpy of combustion, we need the total enthalpy change for the products and the reactants. The enthalpy change for the products is found by summing the enthalpies of formation of each product, each multiplied by their respective coefficients in the balanced equation.
### Calculating the enthalpy change for the products:
- For 3 moles of [tex]\( CO_2 \)[/tex]:
[tex]\[ 3 \times \Delta H_{f, CO_2} = 3 \times (-393.5\, \text{kJ/mol}) = -1180.5\, \text{kJ} \][/tex]
- For 4 moles of [tex]\( H_2O \)[/tex]:
[tex]\[ 4 \times \Delta H_{f, H_2O} = 4 \times (-241.82\, \text{kJ/mol}) = -967.28\, \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{products}} = -1180.5\, \text{kJ} + -967.28\, \text{kJ} = -2147.78\, \text{kJ} \][/tex]
### Calculating the enthalpy change for the reactants:
Since oxygen ([tex]\(O_2\)[/tex]) in its elemental form does not contribute to the enthalpy change, we only consider propane ([tex]\(C_3H_8\)[/tex]):
[tex]\[ \Delta H_{\text{reactants}} = \Delta H_{f, C_3H_8} = -103.8\, \text{kJ} \][/tex]
### Finding the enthalpy of combustion:
The enthalpy of combustion ([tex]\(\Delta H\)[/tex]) is given by:
[tex]\[ \Delta H = \Delta H_{\text{products}} - \Delta H_{\text{reactants}} \][/tex]
[tex]\[ \Delta H = (-2147.78\, \text{kJ}) - (-103.8\, \text{kJ}) \][/tex]
[tex]\[ \Delta H = -2043.98\, \text{kJ/mol} \][/tex]
### Conclusion:
The enthalpy of combustion per mole of [tex]\( C_3H_8 \)[/tex] is approximately [tex]\(-2044.0\, \text{kJ/mol} \)[/tex].
Thus, the correct choice among the given options is:
[tex]\[ -2,044.0\, \text{kJ/mol} \][/tex]
[tex]\[ C_3H_8(g) + 5 O_2(g) \rightarrow 3 CO_2(g) + 4 H_2O(g) \][/tex]
Given data:
- [tex]\(\Delta H_f \)[/tex] of [tex]\(C_3H_8 \)[/tex] = -103.8 kJ/mol
- [tex]\(\Delta H_f \)[/tex] of [tex]\(CO_2 \)[/tex] = -393.5 kJ/mol
- [tex]\(\Delta H_f \)[/tex] of [tex]\(H_2O \)[/tex] = -241.82 kJ/mol
To find the enthalpy of combustion, we need the total enthalpy change for the products and the reactants. The enthalpy change for the products is found by summing the enthalpies of formation of each product, each multiplied by their respective coefficients in the balanced equation.
### Calculating the enthalpy change for the products:
- For 3 moles of [tex]\( CO_2 \)[/tex]:
[tex]\[ 3 \times \Delta H_{f, CO_2} = 3 \times (-393.5\, \text{kJ/mol}) = -1180.5\, \text{kJ} \][/tex]
- For 4 moles of [tex]\( H_2O \)[/tex]:
[tex]\[ 4 \times \Delta H_{f, H_2O} = 4 \times (-241.82\, \text{kJ/mol}) = -967.28\, \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{products}} = -1180.5\, \text{kJ} + -967.28\, \text{kJ} = -2147.78\, \text{kJ} \][/tex]
### Calculating the enthalpy change for the reactants:
Since oxygen ([tex]\(O_2\)[/tex]) in its elemental form does not contribute to the enthalpy change, we only consider propane ([tex]\(C_3H_8\)[/tex]):
[tex]\[ \Delta H_{\text{reactants}} = \Delta H_{f, C_3H_8} = -103.8\, \text{kJ} \][/tex]
### Finding the enthalpy of combustion:
The enthalpy of combustion ([tex]\(\Delta H\)[/tex]) is given by:
[tex]\[ \Delta H = \Delta H_{\text{products}} - \Delta H_{\text{reactants}} \][/tex]
[tex]\[ \Delta H = (-2147.78\, \text{kJ}) - (-103.8\, \text{kJ}) \][/tex]
[tex]\[ \Delta H = -2043.98\, \text{kJ/mol} \][/tex]
### Conclusion:
The enthalpy of combustion per mole of [tex]\( C_3H_8 \)[/tex] is approximately [tex]\(-2044.0\, \text{kJ/mol} \)[/tex].
Thus, the correct choice among the given options is:
[tex]\[ -2,044.0\, \text{kJ/mol} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.