Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve this problem, let's follow a step-by-step approach:
1. Identify the length of [tex]\(AB\)[/tex]:
The distance from point [tex]\(A\)[/tex] to point [tex]\(B\)[/tex] is 16 units.
2. Find the midpoint [tex]\(M\)[/tex]:
Point [tex]\(M\)[/tex] is the midpoint of [tex]\(AB\)[/tex], so [tex]\(M\)[/tex] is exactly halfway between [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
[tex]\[ \text{Let } A = x \text{ and } B = x + 16 \][/tex]
[tex]\[ M = \frac{A + B}{2} = \frac{x + (x + 16)}{2} = \frac{2x + 16}{2} = x + 8 \][/tex]
3. Locate point [tex]\(K\)[/tex]:
Point [tex]\(K\)[/tex] is the midpoint of [tex]\(AM\)[/tex] and is given to be located at 2 on the number line.
[tex]\[ K = \frac{A + M}{2} \][/tex]
Given [tex]\(K = 2\)[/tex],
[tex]\[ 2 = \frac{A + M}{2} = \frac{x + (x + 8)}{2} = \frac{2x + 8}{2} = x + 4 \][/tex]
Solving for [tex]\(x\)[/tex]:
[tex]\[ 2 = x + 4 \][/tex]
[tex]\[ x = -2 \][/tex]
4. Determine points [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(M\)[/tex]:
Now that we have [tex]\(x = -2\)[/tex],
[tex]\[ A = -2 \][/tex]
[tex]\[ B = x + 16 = -2 + 16 = 14 \][/tex]
[tex]\[ M = x + 8 = -2 + 8 = 6 \][/tex]
5. Find the midpoint of [tex]\(AK\)[/tex]:
Knowing that [tex]\(K = 2\)[/tex] and [tex]\(A = -2\)[/tex],
[tex]\[ \text{Midpoint of } AK = \frac{A + K}{2} = \frac{-2 + 2}{2} = 0 \][/tex]
Thus, the largest possible midpoint of [tex]\(AK\)[/tex] is [tex]\(\boxed{0}\)[/tex].
1. Identify the length of [tex]\(AB\)[/tex]:
The distance from point [tex]\(A\)[/tex] to point [tex]\(B\)[/tex] is 16 units.
2. Find the midpoint [tex]\(M\)[/tex]:
Point [tex]\(M\)[/tex] is the midpoint of [tex]\(AB\)[/tex], so [tex]\(M\)[/tex] is exactly halfway between [tex]\(A\)[/tex] and [tex]\(B\)[/tex].
[tex]\[ \text{Let } A = x \text{ and } B = x + 16 \][/tex]
[tex]\[ M = \frac{A + B}{2} = \frac{x + (x + 16)}{2} = \frac{2x + 16}{2} = x + 8 \][/tex]
3. Locate point [tex]\(K\)[/tex]:
Point [tex]\(K\)[/tex] is the midpoint of [tex]\(AM\)[/tex] and is given to be located at 2 on the number line.
[tex]\[ K = \frac{A + M}{2} \][/tex]
Given [tex]\(K = 2\)[/tex],
[tex]\[ 2 = \frac{A + M}{2} = \frac{x + (x + 8)}{2} = \frac{2x + 8}{2} = x + 4 \][/tex]
Solving for [tex]\(x\)[/tex]:
[tex]\[ 2 = x + 4 \][/tex]
[tex]\[ x = -2 \][/tex]
4. Determine points [tex]\(A\)[/tex], [tex]\(B\)[/tex], and [tex]\(M\)[/tex]:
Now that we have [tex]\(x = -2\)[/tex],
[tex]\[ A = -2 \][/tex]
[tex]\[ B = x + 16 = -2 + 16 = 14 \][/tex]
[tex]\[ M = x + 8 = -2 + 8 = 6 \][/tex]
5. Find the midpoint of [tex]\(AK\)[/tex]:
Knowing that [tex]\(K = 2\)[/tex] and [tex]\(A = -2\)[/tex],
[tex]\[ \text{Midpoint of } AK = \frac{A + K}{2} = \frac{-2 + 2}{2} = 0 \][/tex]
Thus, the largest possible midpoint of [tex]\(AK\)[/tex] is [tex]\(\boxed{0}\)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.