Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's tackle the question step by step.
### Part (a)
#### Given:
Roster form: [tex]\(\{-1,0,1,2,3\}\)[/tex]
#### Required:
Set-builder form.
To express this set in set-builder form, let's analyze its elements. The set contains the integers [tex]\(-1, 0, 1, 2,\)[/tex] and [tex]\(3\)[/tex].
From this, we can observe that it contains all the integers [tex]\(x\)[/tex] from [tex]\(-1\)[/tex] to [tex]\(3\)[/tex], inclusive. Therefore, the set-builder notation can be written as:
[tex]\[ \{ x \mid x \text{ is an integer and } -1 \leq x \leq 3 \} \][/tex]
### Part (b)
#### Given:
Set-builder form: [tex]\(\{ y \mid y \text{ is an integer and } y \geq -1 \}\)[/tex]
#### Required:
Roster form.
To convert from set-builder form to roster form, we'll list at least the first four elements to illustrate the pattern. Starting from [tex]\(-1\)[/tex], the next integers would be [tex]\(0\)[/tex], [tex]\(1\)[/tex], [tex]\(2\)[/tex], and so on.
So, the roster form representing the set including at least four elements to show the pattern would be:
[tex]\[ \{ -1, 0, 1, 2, 3, \ldots \} \][/tex]
This indicates that [tex]\(y\)[/tex] continues indefinitely in the positive direction, starting from [tex]\(-1\)[/tex].
### Final Answer:
(a) Roster form: [tex]\(\{-1,0,1,2,3\}\)[/tex]
Set-builder form: [tex]\(\{ x \mid x \text{ is an integer and } -1 \leq x \leq 3 \}\)[/tex]
(b) Set-builder form: [tex]\(\{ y \mid y \text{ is an integer and } y \geq -1 \}\)[/tex]
Roster form: [tex]\(\{ -1, 0, 1, 2, 3, \ldots \}\)[/tex]
### Part (a)
#### Given:
Roster form: [tex]\(\{-1,0,1,2,3\}\)[/tex]
#### Required:
Set-builder form.
To express this set in set-builder form, let's analyze its elements. The set contains the integers [tex]\(-1, 0, 1, 2,\)[/tex] and [tex]\(3\)[/tex].
From this, we can observe that it contains all the integers [tex]\(x\)[/tex] from [tex]\(-1\)[/tex] to [tex]\(3\)[/tex], inclusive. Therefore, the set-builder notation can be written as:
[tex]\[ \{ x \mid x \text{ is an integer and } -1 \leq x \leq 3 \} \][/tex]
### Part (b)
#### Given:
Set-builder form: [tex]\(\{ y \mid y \text{ is an integer and } y \geq -1 \}\)[/tex]
#### Required:
Roster form.
To convert from set-builder form to roster form, we'll list at least the first four elements to illustrate the pattern. Starting from [tex]\(-1\)[/tex], the next integers would be [tex]\(0\)[/tex], [tex]\(1\)[/tex], [tex]\(2\)[/tex], and so on.
So, the roster form representing the set including at least four elements to show the pattern would be:
[tex]\[ \{ -1, 0, 1, 2, 3, \ldots \} \][/tex]
This indicates that [tex]\(y\)[/tex] continues indefinitely in the positive direction, starting from [tex]\(-1\)[/tex].
### Final Answer:
(a) Roster form: [tex]\(\{-1,0,1,2,3\}\)[/tex]
Set-builder form: [tex]\(\{ x \mid x \text{ is an integer and } -1 \leq x \leq 3 \}\)[/tex]
(b) Set-builder form: [tex]\(\{ y \mid y \text{ is an integer and } y \geq -1 \}\)[/tex]
Roster form: [tex]\(\{ -1, 0, 1, 2, 3, \ldots \}\)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.