Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

In which triangle is the value of [tex]$x$[/tex] equal to [tex]\cos^{-1}\left(\frac{4.3}{6.7}\right)[/tex]?

(Images may not be drawn to scale.)


Sagot :

Let's determine in which triangle the value of [tex]\( x \)[/tex] equals [tex]\( \cos^{-1}\left(\frac{4.3}{6.7}\right) \)[/tex]. We will go through the steps to find the value of [tex]\( x \)[/tex] in degrees and identify the correct triangle.

1. Calculate the ratio:

[tex]\[ \text{ratio} = \frac{4.3}{6.7} \][/tex]

This ratio is approximately 0.6417910447761194.

2. Find the inverse cosine (arc cosine) value:

[tex]\[ x = \cos^{-1}(0.6417910447761194) \][/tex]

The result of this calculation is approximately 0.8739648401891128 radians.

3. Convert the result from radians to degrees:

We use the conversion factor where [tex]\( 1 \)[/tex] radian equals [tex]\( \frac{180}{\pi} \)[/tex] degrees.

[tex]\[ x \text{ in degrees} = 0.8739648401891128 \times \frac{180}{\pi} \][/tex]

This conversion gives us approximately 50.07449678566164 degrees.

4. Conclusion:

The value of [tex]\( x \)[/tex] for the required triangle is approximately [tex]\( 50.07^\circ \)[/tex].

We now look at the given triangles and determine which one has an angle closest to [tex]\( 50.07^\circ \)[/tex]. The triangle that contains this angle is the one where [tex]\( x \)[/tex] is equal to [tex]\( \cos^{-1}\left(\frac{4.3}{6.7}\right) \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.