Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which function represents a polynomial with zeros at [tex]\(-3\)[/tex], [tex]\(-1\)[/tex], [tex]\(0\)[/tex], and [tex]\(6\)[/tex], we need to check which polynomial equations have these specific roots.
1. Analyzing Option A: [tex]\(y = (x-6)(x+1)(x+3)\)[/tex]
This function can be expanded to find its roots:
[tex]\[ y = (x-6)(x+1)(x+3) \][/tex]
- The roots are the values of [tex]\(x\)[/tex] that make each factor equal to zero.
- The roots here are found by solving:
[tex]\[ x - 6 = 0 \implies x = 6 \\ x + 1 = 0 \implies x = -1 \\ x + 3 = 0 \implies x = -3 \][/tex]
- This function has zeros at [tex]\(6\)[/tex], [tex]\(-1\)[/tex], and [tex]\(-3\)[/tex], but it's missing [tex]\(0\)[/tex].
2. Analyzing Option B: [tex]\(y = x(x-3)(x-1)(x+6)\)[/tex]
This function can be expanded to find its roots:
[tex]\[ y = x(x-3)(x-1)(x+6) \][/tex]
- The roots are found by solving:
[tex]\[ x = 0 \\ x-3 = 0 \implies x = 3 \\ x-1 = 0 \implies x = 1 \\ x + 6 = 0 \implies x = -6 \][/tex]
- This function has zeros at [tex]\(0\)[/tex], [tex]\(3\)[/tex], [tex]\(1\)[/tex], and [tex]\(-6\)[/tex]. These do not match [tex]\(-3\)[/tex], [tex]\(-1\)[/tex], [tex]\(0\)[/tex], and [tex]\(6\)[/tex].
3. Analyzing Option C: [tex]\(y = x(x-6)(x+1)(x+3)\)[/tex]
This function can be expanded to find its roots:
[tex]\[ y = x(x-6)(x+1)(x+3) \][/tex]
- The roots are found by solving:
[tex]\[ x = 0 \\ x - 6 = 0 \implies x = 6 \\ x + 1 = 0 \implies x = -1 \\ x + 3 = 0 \implies x = -3 \][/tex]
- This function has zeros at [tex]\(0\)[/tex], [tex]\(6\)[/tex], [tex]\(-1\)[/tex], and [tex]\(-3\)[/tex], which correctly match the given zeros.
4. Analyzing Option D: [tex]\(y = (x-3)(x-1)(x+6)\)[/tex]
This function can be expanded to find its roots:
[tex]\[ y = (x-3)(x-1)(x+6) \][/tex]
- The roots are found by solving:
[tex]\[ x-3 = 0 \implies x = 3 \\ x-1 = 0 \implies x = 1 \\ x + 6 = 0 \implies x = -6 \][/tex]
- This function has zeros at [tex]\(3\)[/tex], [tex]\(1\)[/tex], and [tex]\(-6\)[/tex], but it does not include [tex]\(0\)[/tex], [tex]\(-3\)[/tex], and [tex]\(-1\)[/tex].
Upon reviewing each option, we conclude that the correct polynomial function with zeros at [tex]\(-3\)[/tex], [tex]\(-1\)[/tex], [tex]\(0\)[/tex], and [tex]\(6\)[/tex] is:
Option C: [tex]\(y = x(x-6)(x+1)(x+3)\)[/tex]
1. Analyzing Option A: [tex]\(y = (x-6)(x+1)(x+3)\)[/tex]
This function can be expanded to find its roots:
[tex]\[ y = (x-6)(x+1)(x+3) \][/tex]
- The roots are the values of [tex]\(x\)[/tex] that make each factor equal to zero.
- The roots here are found by solving:
[tex]\[ x - 6 = 0 \implies x = 6 \\ x + 1 = 0 \implies x = -1 \\ x + 3 = 0 \implies x = -3 \][/tex]
- This function has zeros at [tex]\(6\)[/tex], [tex]\(-1\)[/tex], and [tex]\(-3\)[/tex], but it's missing [tex]\(0\)[/tex].
2. Analyzing Option B: [tex]\(y = x(x-3)(x-1)(x+6)\)[/tex]
This function can be expanded to find its roots:
[tex]\[ y = x(x-3)(x-1)(x+6) \][/tex]
- The roots are found by solving:
[tex]\[ x = 0 \\ x-3 = 0 \implies x = 3 \\ x-1 = 0 \implies x = 1 \\ x + 6 = 0 \implies x = -6 \][/tex]
- This function has zeros at [tex]\(0\)[/tex], [tex]\(3\)[/tex], [tex]\(1\)[/tex], and [tex]\(-6\)[/tex]. These do not match [tex]\(-3\)[/tex], [tex]\(-1\)[/tex], [tex]\(0\)[/tex], and [tex]\(6\)[/tex].
3. Analyzing Option C: [tex]\(y = x(x-6)(x+1)(x+3)\)[/tex]
This function can be expanded to find its roots:
[tex]\[ y = x(x-6)(x+1)(x+3) \][/tex]
- The roots are found by solving:
[tex]\[ x = 0 \\ x - 6 = 0 \implies x = 6 \\ x + 1 = 0 \implies x = -1 \\ x + 3 = 0 \implies x = -3 \][/tex]
- This function has zeros at [tex]\(0\)[/tex], [tex]\(6\)[/tex], [tex]\(-1\)[/tex], and [tex]\(-3\)[/tex], which correctly match the given zeros.
4. Analyzing Option D: [tex]\(y = (x-3)(x-1)(x+6)\)[/tex]
This function can be expanded to find its roots:
[tex]\[ y = (x-3)(x-1)(x+6) \][/tex]
- The roots are found by solving:
[tex]\[ x-3 = 0 \implies x = 3 \\ x-1 = 0 \implies x = 1 \\ x + 6 = 0 \implies x = -6 \][/tex]
- This function has zeros at [tex]\(3\)[/tex], [tex]\(1\)[/tex], and [tex]\(-6\)[/tex], but it does not include [tex]\(0\)[/tex], [tex]\(-3\)[/tex], and [tex]\(-1\)[/tex].
Upon reviewing each option, we conclude that the correct polynomial function with zeros at [tex]\(-3\)[/tex], [tex]\(-1\)[/tex], [tex]\(0\)[/tex], and [tex]\(6\)[/tex] is:
Option C: [tex]\(y = x(x-6)(x+1)(x+3)\)[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.