Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To analyze the behavior of the function [tex]\( f(n) = \left|(0.5 + 0.2i)^n\right| \)[/tex] as [tex]\( n \)[/tex] increases, we need to consider the properties of complex numbers and their magnitudes.
1. Understanding the Magnitude of a Complex Number:
Given a complex number [tex]\( z = a + bi \)[/tex], its magnitude is defined as [tex]\( |z| = \sqrt{a^2 + b^2} \)[/tex].
2. Determine the Magnitude of the Base Complex Number:
For the complex number [tex]\( 0.5 + 0.2i \)[/tex], calculate its magnitude:
[tex]\[ |0.5 + 0.2i| = \sqrt{(0.5)^2 + (0.2)^2} = \sqrt{0.25 + 0.04} = \sqrt{0.29} \approx 0.5385. \][/tex]
3. Analyzing the Magnitude Over [tex]\( n \)[/tex]:
When you raise the magnitude of a number to the power of [tex]\( n \)[/tex], the overall magnitude changes accordingly. If the magnitude of the base complex number [tex]\( |0.5 + 0.2i| \approx 0.5385 \)[/tex] is less than 1, raising it to higher powers (i.e., increasing [tex]\( n \)[/tex]) will make it smaller:
[tex]\[ |(0.5 + 0.2i)^n| = (|0.5 + 0.2i|)^n. \][/tex]
4. Behavior of [tex]\( f(n) \)[/tex]:
Since [tex]\( |0.5 + 0.2i| \approx 0.5385 \)[/tex] is less than 1, raising this magnitude to higher and higher powers [tex]\( n \)[/tex] will cause the result to approach zero:
[tex]\[ (0.5385)^n \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty. \][/tex]
Based on this analysis, we can conclude that as [tex]\( n \)[/tex] increases, [tex]\( f(n) = \left|(0.5 + 0.2i)^n\right| \)[/tex] decreases.
Thus, the correct statement is:
- As [tex]\( n \)[/tex] increases, [tex]\( f(n) \)[/tex] decreases.
1. Understanding the Magnitude of a Complex Number:
Given a complex number [tex]\( z = a + bi \)[/tex], its magnitude is defined as [tex]\( |z| = \sqrt{a^2 + b^2} \)[/tex].
2. Determine the Magnitude of the Base Complex Number:
For the complex number [tex]\( 0.5 + 0.2i \)[/tex], calculate its magnitude:
[tex]\[ |0.5 + 0.2i| = \sqrt{(0.5)^2 + (0.2)^2} = \sqrt{0.25 + 0.04} = \sqrt{0.29} \approx 0.5385. \][/tex]
3. Analyzing the Magnitude Over [tex]\( n \)[/tex]:
When you raise the magnitude of a number to the power of [tex]\( n \)[/tex], the overall magnitude changes accordingly. If the magnitude of the base complex number [tex]\( |0.5 + 0.2i| \approx 0.5385 \)[/tex] is less than 1, raising it to higher powers (i.e., increasing [tex]\( n \)[/tex]) will make it smaller:
[tex]\[ |(0.5 + 0.2i)^n| = (|0.5 + 0.2i|)^n. \][/tex]
4. Behavior of [tex]\( f(n) \)[/tex]:
Since [tex]\( |0.5 + 0.2i| \approx 0.5385 \)[/tex] is less than 1, raising this magnitude to higher and higher powers [tex]\( n \)[/tex] will cause the result to approach zero:
[tex]\[ (0.5385)^n \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty. \][/tex]
Based on this analysis, we can conclude that as [tex]\( n \)[/tex] increases, [tex]\( f(n) = \left|(0.5 + 0.2i)^n\right| \)[/tex] decreases.
Thus, the correct statement is:
- As [tex]\( n \)[/tex] increases, [tex]\( f(n) \)[/tex] decreases.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.