Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine whether the given relation is a function, we need to verify if every input [tex]\( x \)[/tex] has a unique corresponding output [tex]\( y \)[/tex]. In other words, for the relation to be a function, each value of [tex]\( x \)[/tex] must be paired with exactly one value of [tex]\( y \)[/tex].
Let's examine the provided table in detail:
[tex]\[ \begin{tabular}{|c|c|} \hline Input, \( x \) & Output, \( y \) \\ \hline 9 & 2 \\ \hline 6 & 4 \\ \hline 9 & 6 \\ \hline 12 & 8 \\ \hline \end{tabular} \][/tex]
- The input [tex]\( x = 9 \)[/tex] is associated with two different outputs: [tex]\( y = 2 \)[/tex] and [tex]\( y = 6 \)[/tex].
- The input [tex]\( x = 6 \)[/tex] is associated with a single output: [tex]\( y = 4 \)[/tex].
- The input [tex]\( x = 12 \)[/tex] is associated with a single output: [tex]\( y = 8 \)[/tex].
Since the input [tex]\( x = 9 \)[/tex] does not have a unique corresponding output (it is paired with both 2 and 6), the relation fails the criteria of a function. For a relation to be a function, each input must map to exactly one output, but here we can see that [tex]\( x = 9 \)[/tex] maps to more than one output.
Therefore, the relation shown in the table is not a function.
Let's examine the provided table in detail:
[tex]\[ \begin{tabular}{|c|c|} \hline Input, \( x \) & Output, \( y \) \\ \hline 9 & 2 \\ \hline 6 & 4 \\ \hline 9 & 6 \\ \hline 12 & 8 \\ \hline \end{tabular} \][/tex]
- The input [tex]\( x = 9 \)[/tex] is associated with two different outputs: [tex]\( y = 2 \)[/tex] and [tex]\( y = 6 \)[/tex].
- The input [tex]\( x = 6 \)[/tex] is associated with a single output: [tex]\( y = 4 \)[/tex].
- The input [tex]\( x = 12 \)[/tex] is associated with a single output: [tex]\( y = 8 \)[/tex].
Since the input [tex]\( x = 9 \)[/tex] does not have a unique corresponding output (it is paired with both 2 and 6), the relation fails the criteria of a function. For a relation to be a function, each input must map to exactly one output, but here we can see that [tex]\( x = 9 \)[/tex] maps to more than one output.
Therefore, the relation shown in the table is not a function.
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.