Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve the given vector differential equation [tex]\( \mathbf{r}'(t) = 8t^{-1} \mathbf{i} + 10t \mathbf{j} + 21t^2 \mathbf{k} \)[/tex] with the initial condition [tex]\( \mathbf{r}(1) = \mathbf{i} + \mathbf{j} + \mathbf{k} \)[/tex], follow these steps:
1. Write the differential equation in component form:
[tex]\[ \mathbf{r}'(t) = \left(8t^{-1}\right)\mathbf{i} + \left(10t\right)\mathbf{j} + \left(21t^2\right)\mathbf{k} \][/tex]
2. Integrate each component of the vector:
- For the [tex]\(\mathbf{i}\)[/tex]-component:
[tex]\[ \int 8t^{-1} \, dt = 8 \int t^{-1} \, dt = 8 \ln |t| + C_1 \][/tex]
Since [tex]\(t > 0\)[/tex], we can write the answer as:
[tex]\[ 8 \ln t + C_1 \][/tex]
- For the [tex]\(\mathbf{j}\)[/tex]-component:
[tex]\[ \int 10t \, dt = 10 \int t \, dt = 10 \left(\frac{t^2}{2}\right) + C_2 = 5t^2 + C_2 \][/tex]
- For the [tex]\(\mathbf{k}\)[/tex]-component:
[tex]\[ \int 21t^2 \, dt = 21 \int t^2 \, dt = 21 \left(\frac{t^3}{3}\right) + C_3 = 7t^3 + C_3 \][/tex]
3. Combine the integrated components to form the general solution of the vector [tex]\( \mathbf{r}(t) \)[/tex]:
[tex]\[ \mathbf{r}(t) = (8 \ln t + C_1)\mathbf{i} + (5t^2 + C_2)\mathbf{j} + (7t^3 + C_3)\mathbf{k} \][/tex]
4. Apply the initial condition [tex]\( \mathbf{r}(1) = \mathbf{i} + \mathbf{j} + \mathbf{k} \)[/tex]:
[tex]\[ \mathbf{r}(1) = (8 \ln 1 + C_1)\mathbf{i} + (5 \cdot 1^2 + C_2)\mathbf{j} + (7 \cdot 1^3 + C_3)\mathbf{k} \][/tex]
Simplify using [tex]\( \ln 1 = 0 \)[/tex]:
[tex]\[ \mathbf{r}(1) = C_1 \mathbf{i} + (5 + C_2) \mathbf{j} + (7 + C_3) \mathbf{k} \][/tex]
Set this equal to [tex]\( \mathbf{i} + \mathbf{j} + \mathbf{k} \)[/tex]:
[tex]\[ C_1 \mathbf{i} + (5 + C_2) \mathbf{j} + (7 + C_3) \mathbf{k} = \mathbf{i} + \mathbf{j} + \mathbf{k} \][/tex]
This gives us the equations for the constants [tex]\( C_1, C_2, \)[/tex] and [tex]\( C_3 \)[/tex]:
[tex]\[ C_1 = 1 \][/tex]
[tex]\[ 5 + C_2 = 1 \implies C_2 = -4 \][/tex]
[tex]\[ 7 + C_3 = 1 \implies C_3 = -6 \][/tex]
5. Substitute the constants [tex]\( C_1, C_2, \)[/tex] and [tex]\( C_3 \)[/tex] back into the general solution:
[tex]\[ \mathbf{r}(t) = (8 \ln t + 1) \mathbf{i} + (5t^2 - 4) \mathbf{j} + (7t^3 - 6) \mathbf{k} \][/tex]
Thus, the solution to the vector differential equation [tex]\( \mathbf{r}'(t) = 8t^{-1} \mathbf{i} + 10t \mathbf{j} + 21t^2 \mathbf{k} \)[/tex] with the initial condition [tex]\( \mathbf{r}(1) = \mathbf{i} + \mathbf{j} + \mathbf{k} \)[/tex] is:
[tex]\[ \mathbf{r}(t) = (8 \ln t + 1) \mathbf{i} + (5t^2 - 4) \mathbf{j} + (7t^3 - 6) \mathbf{k} \][/tex]
1. Write the differential equation in component form:
[tex]\[ \mathbf{r}'(t) = \left(8t^{-1}\right)\mathbf{i} + \left(10t\right)\mathbf{j} + \left(21t^2\right)\mathbf{k} \][/tex]
2. Integrate each component of the vector:
- For the [tex]\(\mathbf{i}\)[/tex]-component:
[tex]\[ \int 8t^{-1} \, dt = 8 \int t^{-1} \, dt = 8 \ln |t| + C_1 \][/tex]
Since [tex]\(t > 0\)[/tex], we can write the answer as:
[tex]\[ 8 \ln t + C_1 \][/tex]
- For the [tex]\(\mathbf{j}\)[/tex]-component:
[tex]\[ \int 10t \, dt = 10 \int t \, dt = 10 \left(\frac{t^2}{2}\right) + C_2 = 5t^2 + C_2 \][/tex]
- For the [tex]\(\mathbf{k}\)[/tex]-component:
[tex]\[ \int 21t^2 \, dt = 21 \int t^2 \, dt = 21 \left(\frac{t^3}{3}\right) + C_3 = 7t^3 + C_3 \][/tex]
3. Combine the integrated components to form the general solution of the vector [tex]\( \mathbf{r}(t) \)[/tex]:
[tex]\[ \mathbf{r}(t) = (8 \ln t + C_1)\mathbf{i} + (5t^2 + C_2)\mathbf{j} + (7t^3 + C_3)\mathbf{k} \][/tex]
4. Apply the initial condition [tex]\( \mathbf{r}(1) = \mathbf{i} + \mathbf{j} + \mathbf{k} \)[/tex]:
[tex]\[ \mathbf{r}(1) = (8 \ln 1 + C_1)\mathbf{i} + (5 \cdot 1^2 + C_2)\mathbf{j} + (7 \cdot 1^3 + C_3)\mathbf{k} \][/tex]
Simplify using [tex]\( \ln 1 = 0 \)[/tex]:
[tex]\[ \mathbf{r}(1) = C_1 \mathbf{i} + (5 + C_2) \mathbf{j} + (7 + C_3) \mathbf{k} \][/tex]
Set this equal to [tex]\( \mathbf{i} + \mathbf{j} + \mathbf{k} \)[/tex]:
[tex]\[ C_1 \mathbf{i} + (5 + C_2) \mathbf{j} + (7 + C_3) \mathbf{k} = \mathbf{i} + \mathbf{j} + \mathbf{k} \][/tex]
This gives us the equations for the constants [tex]\( C_1, C_2, \)[/tex] and [tex]\( C_3 \)[/tex]:
[tex]\[ C_1 = 1 \][/tex]
[tex]\[ 5 + C_2 = 1 \implies C_2 = -4 \][/tex]
[tex]\[ 7 + C_3 = 1 \implies C_3 = -6 \][/tex]
5. Substitute the constants [tex]\( C_1, C_2, \)[/tex] and [tex]\( C_3 \)[/tex] back into the general solution:
[tex]\[ \mathbf{r}(t) = (8 \ln t + 1) \mathbf{i} + (5t^2 - 4) \mathbf{j} + (7t^3 - 6) \mathbf{k} \][/tex]
Thus, the solution to the vector differential equation [tex]\( \mathbf{r}'(t) = 8t^{-1} \mathbf{i} + 10t \mathbf{j} + 21t^2 \mathbf{k} \)[/tex] with the initial condition [tex]\( \mathbf{r}(1) = \mathbf{i} + \mathbf{j} + \mathbf{k} \)[/tex] is:
[tex]\[ \mathbf{r}(t) = (8 \ln t + 1) \mathbf{i} + (5t^2 - 4) \mathbf{j} + (7t^3 - 6) \mathbf{k} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.