Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Of course! Let's solve the problem step-by-step.
We want to express the sum of four terms of [tex]\(4^2\)[/tex] as a single power of 4. Here is how to do that:
1. Understand the initial expression:
The given expression is [tex]\(4^2 + 4^2 + 4^2 + 4^2\)[/tex].
2. Combine like terms:
Since there are four identical terms of [tex]\(4^2\)[/tex], we can factor out [tex]\(4^2\)[/tex] as follows:
[tex]\[ 4^2 + 4^2 + 4^2 + 4^2 = 4 \times 4^2 \][/tex]
3. Use properties of exponents:
Recall that [tex]\(4^1 = 4\)[/tex]. So we can rewrite the expression [tex]\(4 \times 4^2\)[/tex] using exponent rules. Specifically, [tex]\(a^m \times a^n = a^{m+n}\)[/tex].
[tex]\[ 4 \times 4^2 = 4^1 \times 4^2 \][/tex]
4. Combine the exponents:
According to the rules of exponents [tex]\((a^m \times a^n = a^{m+n})\)[/tex],
[tex]\[ 4^1 \times 4^2 = 4^{1+2} \][/tex]
Simplifying the exponent,
[tex]\[ 4^{1+2} = 4^3 \][/tex]
Therefore, the expression [tex]\(4^2 + 4^2 + 4^2 + 4^2\)[/tex] can be expressed as [tex]\(4^3\)[/tex].
Thus, the correct answer is:
d. [tex]\(4^3\)[/tex]
We want to express the sum of four terms of [tex]\(4^2\)[/tex] as a single power of 4. Here is how to do that:
1. Understand the initial expression:
The given expression is [tex]\(4^2 + 4^2 + 4^2 + 4^2\)[/tex].
2. Combine like terms:
Since there are four identical terms of [tex]\(4^2\)[/tex], we can factor out [tex]\(4^2\)[/tex] as follows:
[tex]\[ 4^2 + 4^2 + 4^2 + 4^2 = 4 \times 4^2 \][/tex]
3. Use properties of exponents:
Recall that [tex]\(4^1 = 4\)[/tex]. So we can rewrite the expression [tex]\(4 \times 4^2\)[/tex] using exponent rules. Specifically, [tex]\(a^m \times a^n = a^{m+n}\)[/tex].
[tex]\[ 4 \times 4^2 = 4^1 \times 4^2 \][/tex]
4. Combine the exponents:
According to the rules of exponents [tex]\((a^m \times a^n = a^{m+n})\)[/tex],
[tex]\[ 4^1 \times 4^2 = 4^{1+2} \][/tex]
Simplifying the exponent,
[tex]\[ 4^{1+2} = 4^3 \][/tex]
Therefore, the expression [tex]\(4^2 + 4^2 + 4^2 + 4^2\)[/tex] can be expressed as [tex]\(4^3\)[/tex].
Thus, the correct answer is:
d. [tex]\(4^3\)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.