Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure! Let's walk through the solution step-by-step to find the distance a free proton must travel in an electric field to reach [tex]\(3.4\%\)[/tex] of the speed of light, starting from rest.
### Given:
- Electric field strength ([tex]\(E\)[/tex]): [tex]\(3.00 \times 10^6 \, \text{N/C}\)[/tex]
- Speed of light ([tex]\(c\)[/tex]) : [tex]\(3.00 \times 10^8 \, \text{m/s}\)[/tex]
- Percent speed of light for proton: [tex]\(3.4\% = \frac{3.4}{100} = 0.034\)[/tex]
- Mass of proton ([tex]\(m_p\)[/tex]): [tex]\(1.67 \times 10^{-27} \, \text{kg}\)[/tex]
- Charge of proton ([tex]\(q_p\)[/tex]): [tex]\(1.60 \times 10^{-19} \, \text{C}\)[/tex]
### Step-by-Step Solution:
1. Calculate the final speed of the proton:
[tex]\[ v = 0.034 \times c = 0.034 \times 3.00 \times 10^8 \, \text{m/s} = 1.02 \times 10^7 \, \text{m/s} \][/tex]
2. Determine the kinetic energy (KE) gained by the proton:
[tex]\[ \text{KE} = \frac{1}{2} m_p v^2 \][/tex]
Substituting the values:
[tex]\[ \text{KE} = \frac{1}{2} \times 1.67 \times 10^{-27} \, \text{kg} \times (1.02 \times 10^7 \, \text{m/s})^2 \][/tex]
[tex]\[ \text{KE} = \frac{1}{2} \times 1.67 \times 10^{-27} \times 1.0404 \times 10^{14} \, \text{m}^2/\text{s}^2 \][/tex]
[tex]\[ \text{KE} \approx 8.68734 \times 10^{-14} \, \text{J} \][/tex]
3. Calculate the work done (W) by the electric field to move the proton a certain distance (d):
[tex]\[ W = E \cdot q_p \cdot d \][/tex]
Rearrange to solve for [tex]\(d\)[/tex]:
[tex]\[ d = \frac{\text{KE}}{E \cdot q_p} \][/tex]
4. Find the work done per unit charge by the electric field:
[tex]\[ E \cdot q_p = 3.00 \times 10^6 \, \text{N/C} \times 1.60 \times 10^{-19} \, \text{C} \][/tex]
[tex]\[ E \cdot q_p = 4.80 \times 10^{-13} \, \text{J} \][/tex]
5. Calculate the distance (d):
[tex]\[ d = \frac{8.68734 \times 10^{-14} \, \text{J}}{4.80 \times 10^{-13} \, \text{J}} \][/tex]
[tex]\[ d \approx 0.18098625 \, \text{m} \][/tex]
Therefore, the distance a free proton must travel in the given electric field to reach [tex]\(3.4\%\)[/tex] of the speed of light is approximately:
[tex]\[ d \approx 0.181 \, \text{m} \][/tex]
### Given:
- Electric field strength ([tex]\(E\)[/tex]): [tex]\(3.00 \times 10^6 \, \text{N/C}\)[/tex]
- Speed of light ([tex]\(c\)[/tex]) : [tex]\(3.00 \times 10^8 \, \text{m/s}\)[/tex]
- Percent speed of light for proton: [tex]\(3.4\% = \frac{3.4}{100} = 0.034\)[/tex]
- Mass of proton ([tex]\(m_p\)[/tex]): [tex]\(1.67 \times 10^{-27} \, \text{kg}\)[/tex]
- Charge of proton ([tex]\(q_p\)[/tex]): [tex]\(1.60 \times 10^{-19} \, \text{C}\)[/tex]
### Step-by-Step Solution:
1. Calculate the final speed of the proton:
[tex]\[ v = 0.034 \times c = 0.034 \times 3.00 \times 10^8 \, \text{m/s} = 1.02 \times 10^7 \, \text{m/s} \][/tex]
2. Determine the kinetic energy (KE) gained by the proton:
[tex]\[ \text{KE} = \frac{1}{2} m_p v^2 \][/tex]
Substituting the values:
[tex]\[ \text{KE} = \frac{1}{2} \times 1.67 \times 10^{-27} \, \text{kg} \times (1.02 \times 10^7 \, \text{m/s})^2 \][/tex]
[tex]\[ \text{KE} = \frac{1}{2} \times 1.67 \times 10^{-27} \times 1.0404 \times 10^{14} \, \text{m}^2/\text{s}^2 \][/tex]
[tex]\[ \text{KE} \approx 8.68734 \times 10^{-14} \, \text{J} \][/tex]
3. Calculate the work done (W) by the electric field to move the proton a certain distance (d):
[tex]\[ W = E \cdot q_p \cdot d \][/tex]
Rearrange to solve for [tex]\(d\)[/tex]:
[tex]\[ d = \frac{\text{KE}}{E \cdot q_p} \][/tex]
4. Find the work done per unit charge by the electric field:
[tex]\[ E \cdot q_p = 3.00 \times 10^6 \, \text{N/C} \times 1.60 \times 10^{-19} \, \text{C} \][/tex]
[tex]\[ E \cdot q_p = 4.80 \times 10^{-13} \, \text{J} \][/tex]
5. Calculate the distance (d):
[tex]\[ d = \frac{8.68734 \times 10^{-14} \, \text{J}}{4.80 \times 10^{-13} \, \text{J}} \][/tex]
[tex]\[ d \approx 0.18098625 \, \text{m} \][/tex]
Therefore, the distance a free proton must travel in the given electric field to reach [tex]\(3.4\%\)[/tex] of the speed of light is approximately:
[tex]\[ d \approx 0.181 \, \text{m} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.