Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Enter the correct answer in the box.

If [tex]$x \neq 0$[/tex], what is the sum of [tex]$4 \sqrt[3]{x^{10}} + 5 x^3 \sqrt[3]{8 x}$[/tex] in simplest form?


Sagot :

To find the sum of [tex]\(4 \sqrt[3]{x^{10}} + 5 x^3 \sqrt[3]{8 x}\)[/tex] in simplest form, let's break it down step-by-step and simplify each term separately.

1. Simplify the first term [tex]\(4 \sqrt[3]{x^{10}}\)[/tex]:

[tex]\[ 4 \sqrt[3]{x^{10}} \][/tex]

The cube root of [tex]\(x^{10}\)[/tex] can be written as:

[tex]\[ \sqrt[3]{x^{10}} = (x^{10})^{1/3} = x^{10/3} \][/tex]

So, the first term becomes:

[tex]\[ 4 \sqrt[3]{x^{10}} = 4 \cdot x^{10/3} = 4 x^{10/3} \][/tex]

2. Simplify the second term [tex]\(5 x^3 \sqrt[3]{8 x}\)[/tex]:

[tex]\[ 5 x^3 \sqrt[3]{8 x} \][/tex]

The cube root of [tex]\(8 x\)[/tex] is:

[tex]\[ \sqrt[3]{8 x} \][/tex]

We know that [tex]\(8\)[/tex] can be written as [tex]\(2^3\)[/tex], so:

[tex]\[ \sqrt[3]{8 x} = \sqrt[3]{2^3 \cdot x} = 2 \cdot \sqrt[3]{x} = 2 x^{1/3} \][/tex]

Therefore, the second term becomes:

[tex]\[ 5 x^3 \cdot \sqrt[3]{8 x} = 5 x^3 \cdot 2 x^{1/3} = 10 x^{3 + 1/3} = 10 x^{10/3} \][/tex]

3. Combine the simplified terms:

Now, sum the two simplified terms:

[tex]\[ 4 x^{10/3} + 10 x^{10/3} \][/tex]

These are like terms and can be added together:

[tex]\[ = (4 + 10) x^{10/3} \][/tex]

[tex]\[ = 14 x^{10/3} \][/tex]

Thus, the simplest form of [tex]\(4 \sqrt[3]{x^{10}} + 5 x^3 \sqrt[3]{8 x}\)[/tex] is:

[tex]\[ 14 x^{10/3} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.