At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To convert the polar equation [tex]\(\theta = \frac{\pi}{3}\)[/tex] into rectangular form and identify the type of curve represented, we will follow these steps:
### Step 1: Understanding the Polar Equation
The given polar equation is:
[tex]\[ \theta = \frac{\pi}{3} \][/tex]
This means that the angle [tex]\(\theta\)[/tex] is fixed at [tex]\(\frac{\pi}{3}\)[/tex] radians.
### Step 2: Polar to Rectangular Coordinates
In polar coordinates, (r, [tex]\(\theta\)[/tex]) can be converted to rectangular coordinates (x, y) using the following relationships:
[tex]\[ x = r \cos(\theta) \][/tex]
[tex]\[ y = r \sin(\theta) \][/tex]
### Step 3: Substituting the Fixed Angle
For [tex]\(\theta = \frac{\pi}{3}\)[/tex], we use the known trigonometric values:
[tex]\[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \][/tex]
[tex]\[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \][/tex]
Thus, substituting these values into the equations for x and y, we get:
[tex]\[ x = r \cdot \frac{1}{2} \][/tex]
[tex]\[ y = r \cdot \frac{\sqrt{3}}{2} \][/tex]
### Step 4: Eliminating [tex]\(r\)[/tex]
To eliminate [tex]\(r\)[/tex], we can divide the equation for [tex]\(y\)[/tex] by the equation for [tex]\(x\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{r \cdot \frac{\sqrt{3}}{2}}{r \cdot \frac{1}{2}} = \frac{\sqrt{3}}{1} = \sqrt{3} \][/tex]
This simplifies to:
[tex]\[ y = \sqrt{3} \cdot x \][/tex]
### Step 5: Rectangular Form and Curve Type
Hence, the rectangular form of the given polar equation is:
[tex]\[ y = \sqrt{3} \cdot x \][/tex]
This equation represents a straight line passing through the origin (0,0) with a slope of [tex]\(\sqrt{3}\)[/tex]. Thus, the type of curve is a straight line.
Therefore, the rectangular form of the polar equation [tex]\(\theta = \frac{\pi}{3}\)[/tex] is:
[tex]\[ y = \sqrt{3} \cdot x \][/tex]
And the type of curve represented is a straight line.
### Step 1: Understanding the Polar Equation
The given polar equation is:
[tex]\[ \theta = \frac{\pi}{3} \][/tex]
This means that the angle [tex]\(\theta\)[/tex] is fixed at [tex]\(\frac{\pi}{3}\)[/tex] radians.
### Step 2: Polar to Rectangular Coordinates
In polar coordinates, (r, [tex]\(\theta\)[/tex]) can be converted to rectangular coordinates (x, y) using the following relationships:
[tex]\[ x = r \cos(\theta) \][/tex]
[tex]\[ y = r \sin(\theta) \][/tex]
### Step 3: Substituting the Fixed Angle
For [tex]\(\theta = \frac{\pi}{3}\)[/tex], we use the known trigonometric values:
[tex]\[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \][/tex]
[tex]\[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \][/tex]
Thus, substituting these values into the equations for x and y, we get:
[tex]\[ x = r \cdot \frac{1}{2} \][/tex]
[tex]\[ y = r \cdot \frac{\sqrt{3}}{2} \][/tex]
### Step 4: Eliminating [tex]\(r\)[/tex]
To eliminate [tex]\(r\)[/tex], we can divide the equation for [tex]\(y\)[/tex] by the equation for [tex]\(x\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{r \cdot \frac{\sqrt{3}}{2}}{r \cdot \frac{1}{2}} = \frac{\sqrt{3}}{1} = \sqrt{3} \][/tex]
This simplifies to:
[tex]\[ y = \sqrt{3} \cdot x \][/tex]
### Step 5: Rectangular Form and Curve Type
Hence, the rectangular form of the given polar equation is:
[tex]\[ y = \sqrt{3} \cdot x \][/tex]
This equation represents a straight line passing through the origin (0,0) with a slope of [tex]\(\sqrt{3}\)[/tex]. Thus, the type of curve is a straight line.
Therefore, the rectangular form of the polar equation [tex]\(\theta = \frac{\pi}{3}\)[/tex] is:
[tex]\[ y = \sqrt{3} \cdot x \][/tex]
And the type of curve represented is a straight line.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.