Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To convert the polar equation [tex]\(\theta = \frac{\pi}{3}\)[/tex] into rectangular form and identify the type of curve represented, we will follow these steps:
### Step 1: Understanding the Polar Equation
The given polar equation is:
[tex]\[ \theta = \frac{\pi}{3} \][/tex]
This means that the angle [tex]\(\theta\)[/tex] is fixed at [tex]\(\frac{\pi}{3}\)[/tex] radians.
### Step 2: Polar to Rectangular Coordinates
In polar coordinates, (r, [tex]\(\theta\)[/tex]) can be converted to rectangular coordinates (x, y) using the following relationships:
[tex]\[ x = r \cos(\theta) \][/tex]
[tex]\[ y = r \sin(\theta) \][/tex]
### Step 3: Substituting the Fixed Angle
For [tex]\(\theta = \frac{\pi}{3}\)[/tex], we use the known trigonometric values:
[tex]\[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \][/tex]
[tex]\[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \][/tex]
Thus, substituting these values into the equations for x and y, we get:
[tex]\[ x = r \cdot \frac{1}{2} \][/tex]
[tex]\[ y = r \cdot \frac{\sqrt{3}}{2} \][/tex]
### Step 4: Eliminating [tex]\(r\)[/tex]
To eliminate [tex]\(r\)[/tex], we can divide the equation for [tex]\(y\)[/tex] by the equation for [tex]\(x\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{r \cdot \frac{\sqrt{3}}{2}}{r \cdot \frac{1}{2}} = \frac{\sqrt{3}}{1} = \sqrt{3} \][/tex]
This simplifies to:
[tex]\[ y = \sqrt{3} \cdot x \][/tex]
### Step 5: Rectangular Form and Curve Type
Hence, the rectangular form of the given polar equation is:
[tex]\[ y = \sqrt{3} \cdot x \][/tex]
This equation represents a straight line passing through the origin (0,0) with a slope of [tex]\(\sqrt{3}\)[/tex]. Thus, the type of curve is a straight line.
Therefore, the rectangular form of the polar equation [tex]\(\theta = \frac{\pi}{3}\)[/tex] is:
[tex]\[ y = \sqrt{3} \cdot x \][/tex]
And the type of curve represented is a straight line.
### Step 1: Understanding the Polar Equation
The given polar equation is:
[tex]\[ \theta = \frac{\pi}{3} \][/tex]
This means that the angle [tex]\(\theta\)[/tex] is fixed at [tex]\(\frac{\pi}{3}\)[/tex] radians.
### Step 2: Polar to Rectangular Coordinates
In polar coordinates, (r, [tex]\(\theta\)[/tex]) can be converted to rectangular coordinates (x, y) using the following relationships:
[tex]\[ x = r \cos(\theta) \][/tex]
[tex]\[ y = r \sin(\theta) \][/tex]
### Step 3: Substituting the Fixed Angle
For [tex]\(\theta = \frac{\pi}{3}\)[/tex], we use the known trigonometric values:
[tex]\[ \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \][/tex]
[tex]\[ \sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2} \][/tex]
Thus, substituting these values into the equations for x and y, we get:
[tex]\[ x = r \cdot \frac{1}{2} \][/tex]
[tex]\[ y = r \cdot \frac{\sqrt{3}}{2} \][/tex]
### Step 4: Eliminating [tex]\(r\)[/tex]
To eliminate [tex]\(r\)[/tex], we can divide the equation for [tex]\(y\)[/tex] by the equation for [tex]\(x\)[/tex]:
[tex]\[ \frac{y}{x} = \frac{r \cdot \frac{\sqrt{3}}{2}}{r \cdot \frac{1}{2}} = \frac{\sqrt{3}}{1} = \sqrt{3} \][/tex]
This simplifies to:
[tex]\[ y = \sqrt{3} \cdot x \][/tex]
### Step 5: Rectangular Form and Curve Type
Hence, the rectangular form of the given polar equation is:
[tex]\[ y = \sqrt{3} \cdot x \][/tex]
This equation represents a straight line passing through the origin (0,0) with a slope of [tex]\(\sqrt{3}\)[/tex]. Thus, the type of curve is a straight line.
Therefore, the rectangular form of the polar equation [tex]\(\theta = \frac{\pi}{3}\)[/tex] is:
[tex]\[ y = \sqrt{3} \cdot x \][/tex]
And the type of curve represented is a straight line.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.