Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Analyze the equation below and complete the instructions that follow.

[tex]\[ \sin (x) = \frac{1}{7} \][/tex]

Solve for [tex]\( x \)[/tex]. Round the answer to the nearest tenth.

A. [tex]\( 3.2^{\circ} \)[/tex]

B. [tex]\( 8.2^{\circ} \)[/tex]

C. [tex]\( 12.4^{\circ} \)[/tex]

D. [tex]\( 14.3^{\circ} \)[/tex]

Please select the best answer from the choices provided:

A

B

C

D


Sagot :

To solve the equation [tex]\(\sin(x) = \frac{1}{7}\)[/tex] and find [tex]\(x\)[/tex] in degrees, we follow these steps:

1. Calculate the Inverse Sine: We start by finding [tex]\(x\)[/tex] in radians using the inverse sine function:
[tex]\[ x = \sin^{-1}\left(\frac{1}{7}\right) \][/tex]

2. Convert to Degrees: Once we have [tex]\(x\)[/tex] in radians, we convert it to degrees by multiplying by [tex]\(\frac{180}{\pi}\)[/tex]:
[tex]\[ x \text{(degrees)} = \left(\sin^{-1}\left(\frac{1}{7}\right)\right) \cdot \frac{180}{\pi} \][/tex]

3. Round to the Nearest Tenth: Finally, we round the result to the nearest tenth of a degree.

After performing these calculations, we find that [tex]\(x \approx 8.21 \, \text{degrees}\)[/tex].

4. Select the Closest Option: Now we compare the result obtained with the given options:
- A. [tex]\(3.2^{\circ}\)[/tex]
- B. [tex]\(8.2^{\circ}\)[/tex]
- C. [tex]\(12.4^{\circ}\)[/tex]
- D. [tex]\(14.3^{\circ}\)[/tex]

The value [tex]\(8.21^{\circ}\)[/tex] rounds to [tex]\(8.2^{\circ}\)[/tex], which is option B.

Thus, the best answer is:

B. [tex]\(8.2^{\circ}\)[/tex]