Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the range of the piecewise function [tex]\( f(x) \)[/tex] given as:
[tex]\[ f(x) = \begin{cases} 3 & \text{if } x < 0 \\ x^2 + 2 & \text{if } 0 \leq x < 2 \\ \frac{1}{2}x + 5 & \text{if } x \geq 2 \end{cases} \][/tex]
Let's analyze each piece of the piecewise function to find the possible values the function can take.
1. For [tex]\( x < 0 \)[/tex]:
- If [tex]\( x \)[/tex] is less than 0, the function [tex]\( f(x) \)[/tex] is always 3.
- Hence, the value 3 is included in the range.
2. For [tex]\( 0 \leq x < 2 \)[/tex]:
- The function in this interval is [tex]\( f(x) = x^2 + 2 \)[/tex].
- Evaluate the function at the endpoints:
- At [tex]\( x = 0 \)[/tex], [tex]\( f(0) = 0^2 + 2 = 2 \)[/tex].
- As [tex]\( x \)[/tex] approaches but does not reach 2, [tex]\( f(x) \approx 2^2 + 2 = 6 \)[/tex] (since [tex]\( f(x) \)[/tex] is continuous and smoothing approaching this value from the left).
- Therefore, the values taken by [tex]\( f(x) \)[/tex] range from 2 to just under 6 (exclusive).
3. For [tex]\( x \geq 2 \)[/tex]:
- The function in this interval is [tex]\( f(x) = \frac{1}{2}x + 5 \)[/tex].
- Evaluate the function at [tex]\( x = 2 \)[/tex]:
- At [tex]\( x = 2 \)[/tex], [tex]\( f(2) = \frac{1}{2}(2) + 5 = 1 + 5 = 6 \)[/tex].
- As [tex]\( x \)[/tex] continues to increase, [tex]\( \frac{1}{2}x + 5 \)[/tex] increases without bound towards positive infinity.
- Therefore, for [tex]\( x \geq 2 \)[/tex], [tex]\( f(x) \)[/tex] starts from 6 and goes to infinity.
Combining the ranges from all intervals:
- From [tex]\( x < 0 \)[/tex], [tex]\( f(x) = 3 \)[/tex].
- From [tex]\( 0 \leq x < 2 \)[/tex], [tex]\( f(x) \)[/tex] spans the interval [tex]\([2, 6)\)[/tex] (includes 2 but values approach 6).
- For [tex]\( x \geq 2 \)[/tex], [tex]\( f(x) \)[/tex] spans from 6 to infinity, including 6.
Thus, the overall range of the function is:
[tex]\[ \{3\} \cup [2, 6) \cup [6, \infty) \][/tex]
Simplifying, we notice the overlapping point at 6. So, the final range combining all segments is:
[tex]\[ \{3\} \cup [2, \infty) \][/tex]
Therefore, the range of the function [tex]\( f(x) \)[/tex] is:
[tex]\[ \boxed{[2, \infty)} \text{ including the value 3.} \][/tex]
[tex]\[ f(x) = \begin{cases} 3 & \text{if } x < 0 \\ x^2 + 2 & \text{if } 0 \leq x < 2 \\ \frac{1}{2}x + 5 & \text{if } x \geq 2 \end{cases} \][/tex]
Let's analyze each piece of the piecewise function to find the possible values the function can take.
1. For [tex]\( x < 0 \)[/tex]:
- If [tex]\( x \)[/tex] is less than 0, the function [tex]\( f(x) \)[/tex] is always 3.
- Hence, the value 3 is included in the range.
2. For [tex]\( 0 \leq x < 2 \)[/tex]:
- The function in this interval is [tex]\( f(x) = x^2 + 2 \)[/tex].
- Evaluate the function at the endpoints:
- At [tex]\( x = 0 \)[/tex], [tex]\( f(0) = 0^2 + 2 = 2 \)[/tex].
- As [tex]\( x \)[/tex] approaches but does not reach 2, [tex]\( f(x) \approx 2^2 + 2 = 6 \)[/tex] (since [tex]\( f(x) \)[/tex] is continuous and smoothing approaching this value from the left).
- Therefore, the values taken by [tex]\( f(x) \)[/tex] range from 2 to just under 6 (exclusive).
3. For [tex]\( x \geq 2 \)[/tex]:
- The function in this interval is [tex]\( f(x) = \frac{1}{2}x + 5 \)[/tex].
- Evaluate the function at [tex]\( x = 2 \)[/tex]:
- At [tex]\( x = 2 \)[/tex], [tex]\( f(2) = \frac{1}{2}(2) + 5 = 1 + 5 = 6 \)[/tex].
- As [tex]\( x \)[/tex] continues to increase, [tex]\( \frac{1}{2}x + 5 \)[/tex] increases without bound towards positive infinity.
- Therefore, for [tex]\( x \geq 2 \)[/tex], [tex]\( f(x) \)[/tex] starts from 6 and goes to infinity.
Combining the ranges from all intervals:
- From [tex]\( x < 0 \)[/tex], [tex]\( f(x) = 3 \)[/tex].
- From [tex]\( 0 \leq x < 2 \)[/tex], [tex]\( f(x) \)[/tex] spans the interval [tex]\([2, 6)\)[/tex] (includes 2 but values approach 6).
- For [tex]\( x \geq 2 \)[/tex], [tex]\( f(x) \)[/tex] spans from 6 to infinity, including 6.
Thus, the overall range of the function is:
[tex]\[ \{3\} \cup [2, 6) \cup [6, \infty) \][/tex]
Simplifying, we notice the overlapping point at 6. So, the final range combining all segments is:
[tex]\[ \{3\} \cup [2, \infty) \][/tex]
Therefore, the range of the function [tex]\( f(x) \)[/tex] is:
[tex]\[ \boxed{[2, \infty)} \text{ including the value 3.} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.