Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the range of the piecewise function [tex]\( f(x) \)[/tex] given as:
[tex]\[ f(x) = \begin{cases} 3 & \text{if } x < 0 \\ x^2 + 2 & \text{if } 0 \leq x < 2 \\ \frac{1}{2}x + 5 & \text{if } x \geq 2 \end{cases} \][/tex]
Let's analyze each piece of the piecewise function to find the possible values the function can take.
1. For [tex]\( x < 0 \)[/tex]:
- If [tex]\( x \)[/tex] is less than 0, the function [tex]\( f(x) \)[/tex] is always 3.
- Hence, the value 3 is included in the range.
2. For [tex]\( 0 \leq x < 2 \)[/tex]:
- The function in this interval is [tex]\( f(x) = x^2 + 2 \)[/tex].
- Evaluate the function at the endpoints:
- At [tex]\( x = 0 \)[/tex], [tex]\( f(0) = 0^2 + 2 = 2 \)[/tex].
- As [tex]\( x \)[/tex] approaches but does not reach 2, [tex]\( f(x) \approx 2^2 + 2 = 6 \)[/tex] (since [tex]\( f(x) \)[/tex] is continuous and smoothing approaching this value from the left).
- Therefore, the values taken by [tex]\( f(x) \)[/tex] range from 2 to just under 6 (exclusive).
3. For [tex]\( x \geq 2 \)[/tex]:
- The function in this interval is [tex]\( f(x) = \frac{1}{2}x + 5 \)[/tex].
- Evaluate the function at [tex]\( x = 2 \)[/tex]:
- At [tex]\( x = 2 \)[/tex], [tex]\( f(2) = \frac{1}{2}(2) + 5 = 1 + 5 = 6 \)[/tex].
- As [tex]\( x \)[/tex] continues to increase, [tex]\( \frac{1}{2}x + 5 \)[/tex] increases without bound towards positive infinity.
- Therefore, for [tex]\( x \geq 2 \)[/tex], [tex]\( f(x) \)[/tex] starts from 6 and goes to infinity.
Combining the ranges from all intervals:
- From [tex]\( x < 0 \)[/tex], [tex]\( f(x) = 3 \)[/tex].
- From [tex]\( 0 \leq x < 2 \)[/tex], [tex]\( f(x) \)[/tex] spans the interval [tex]\([2, 6)\)[/tex] (includes 2 but values approach 6).
- For [tex]\( x \geq 2 \)[/tex], [tex]\( f(x) \)[/tex] spans from 6 to infinity, including 6.
Thus, the overall range of the function is:
[tex]\[ \{3\} \cup [2, 6) \cup [6, \infty) \][/tex]
Simplifying, we notice the overlapping point at 6. So, the final range combining all segments is:
[tex]\[ \{3\} \cup [2, \infty) \][/tex]
Therefore, the range of the function [tex]\( f(x) \)[/tex] is:
[tex]\[ \boxed{[2, \infty)} \text{ including the value 3.} \][/tex]
[tex]\[ f(x) = \begin{cases} 3 & \text{if } x < 0 \\ x^2 + 2 & \text{if } 0 \leq x < 2 \\ \frac{1}{2}x + 5 & \text{if } x \geq 2 \end{cases} \][/tex]
Let's analyze each piece of the piecewise function to find the possible values the function can take.
1. For [tex]\( x < 0 \)[/tex]:
- If [tex]\( x \)[/tex] is less than 0, the function [tex]\( f(x) \)[/tex] is always 3.
- Hence, the value 3 is included in the range.
2. For [tex]\( 0 \leq x < 2 \)[/tex]:
- The function in this interval is [tex]\( f(x) = x^2 + 2 \)[/tex].
- Evaluate the function at the endpoints:
- At [tex]\( x = 0 \)[/tex], [tex]\( f(0) = 0^2 + 2 = 2 \)[/tex].
- As [tex]\( x \)[/tex] approaches but does not reach 2, [tex]\( f(x) \approx 2^2 + 2 = 6 \)[/tex] (since [tex]\( f(x) \)[/tex] is continuous and smoothing approaching this value from the left).
- Therefore, the values taken by [tex]\( f(x) \)[/tex] range from 2 to just under 6 (exclusive).
3. For [tex]\( x \geq 2 \)[/tex]:
- The function in this interval is [tex]\( f(x) = \frac{1}{2}x + 5 \)[/tex].
- Evaluate the function at [tex]\( x = 2 \)[/tex]:
- At [tex]\( x = 2 \)[/tex], [tex]\( f(2) = \frac{1}{2}(2) + 5 = 1 + 5 = 6 \)[/tex].
- As [tex]\( x \)[/tex] continues to increase, [tex]\( \frac{1}{2}x + 5 \)[/tex] increases without bound towards positive infinity.
- Therefore, for [tex]\( x \geq 2 \)[/tex], [tex]\( f(x) \)[/tex] starts from 6 and goes to infinity.
Combining the ranges from all intervals:
- From [tex]\( x < 0 \)[/tex], [tex]\( f(x) = 3 \)[/tex].
- From [tex]\( 0 \leq x < 2 \)[/tex], [tex]\( f(x) \)[/tex] spans the interval [tex]\([2, 6)\)[/tex] (includes 2 but values approach 6).
- For [tex]\( x \geq 2 \)[/tex], [tex]\( f(x) \)[/tex] spans from 6 to infinity, including 6.
Thus, the overall range of the function is:
[tex]\[ \{3\} \cup [2, 6) \cup [6, \infty) \][/tex]
Simplifying, we notice the overlapping point at 6. So, the final range combining all segments is:
[tex]\[ \{3\} \cup [2, \infty) \][/tex]
Therefore, the range of the function [tex]\( f(x) \)[/tex] is:
[tex]\[ \boxed{[2, \infty)} \text{ including the value 3.} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.