Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve this problem, we need to follow a few key steps. Let's break it down step by step.
### Step 1: Define the Random Variable and its Probability Distribution
We are given the random variable [tex]\( X \)[/tex] that takes values [tex]\( 6, 7, 8, 9, 10, 11 \)[/tex], with their corresponding probabilities as shown below:
[tex]\[ \begin{array}{c|cccccc} X & 6 & 7 & 8 & 9 & 10 & 11 \\ \hline P(X) & 0.05 & 0.1 & 0.3 & 0.1 & 0.15 & 0.3 \\ \end{array} \][/tex]
### Step 2: Calculate the Mean (Expected Value) [tex]\(\mu\)[/tex]
The mean (expected value) [tex]\(\mu\)[/tex] of a discrete random variable [tex]\( X \)[/tex] with probabilities [tex]\( P(X) \)[/tex] is calculated using the formula:
[tex]\[ \mu = E(X) = \sum_{i} X_i \cdot P(X_i) \][/tex]
Using the given values:
[tex]\[ \mu = (6 \cdot 0.05) + (7 \cdot 0.1) + (8 \cdot 0.3) + (9 \cdot 0.1) + (10 \cdot 0.15) + (11 \cdot 0.3) \][/tex]
Carrying out the calculations:
[tex]\[ \mu = 0.3 + 0.7 + 2.4 + 0.9 + 1.5 + 3.3 = 9.1 \][/tex]
Thus, the mean is:
[tex]\[ \mu = 9.1 \][/tex]
### Step 3: Calculate the Variance [tex]\(\sigma^2\)[/tex]
The variance [tex]\(\sigma^2\)[/tex] of a discrete random variable [tex]\( X \)[/tex] with probabilities [tex]\( P(X) \)[/tex] is given by the formula:
[tex]\[ \sigma^2 = \sum_{i} (X_i - \mu)^2 \cdot P(X_i) \][/tex]
We already have [tex]\(\mu = 9.1\)[/tex]. Now, we substitute and calculate:
[tex]\[ \sigma^2 = (6 - 9.1)^2 \cdot 0.05 + (7 - 9.1)^2 \cdot 0.1 + (8 - 9.1)^2 \cdot 0.3 + (9 - 9.1)^2 \cdot 0.1 + (10 - 9.1)^2 \cdot 0.15 + (11 - 9.1)^2 \cdot 0.3 \][/tex]
Breaking it down step-by-step, we compute each term:
[tex]\[ (6 - 9.1)^2 = (-3.1)^2 = 9.61 \][/tex]
[tex]\[ (7 - 9.1)^2 = (-2.1)^2 = 4.41 \][/tex]
[tex]\[ (8 - 9.1)^2 = (-1.1)^2 = 1.21 \][/tex]
[tex]\[ (9 - 9.1)^2 = (-0.1)^2 = 0.01 \][/tex]
[tex]\[ (10 - 9.1)^2 = (0.9)^2 = 0.81 \][/tex]
[tex]\[ (11 - 9.1)^2 = (1.9)^2 = 3.61 \][/tex]
Now, multiply each squared term by the corresponding probabilities:
[tex]\[ 0.05 \cdot 9.61 = 0.4805 \][/tex]
[tex]\[ 0.1 \cdot 4.41 = 0.441 \][/tex]
[tex]\[ 0.3 \cdot 1.21 = 0.363 \][/tex]
[tex]\[ 0.1 \cdot 0.01 = 0.001 \][/tex]
[tex]\[ 0.15 \cdot 0.81 = 0.1215 \][/tex]
[tex]\[ 0.3 \cdot 3.61 = 1.083 \][/tex]
Summing these products gives the variance:
[tex]\[ \sigma^2 = 0.4805 + 0.441 + 0.363 + 0.001 + 0.1215 + 1.083 = 2.49 \][/tex]
Rounding [tex]\(\sigma^2\)[/tex] to one decimal place, we get:
[tex]\[ \sigma^2 = 2.5 \][/tex]
Thus, the variance is:
[tex]\[ \sigma^2 = 2.5 \][/tex]
### Step 1: Define the Random Variable and its Probability Distribution
We are given the random variable [tex]\( X \)[/tex] that takes values [tex]\( 6, 7, 8, 9, 10, 11 \)[/tex], with their corresponding probabilities as shown below:
[tex]\[ \begin{array}{c|cccccc} X & 6 & 7 & 8 & 9 & 10 & 11 \\ \hline P(X) & 0.05 & 0.1 & 0.3 & 0.1 & 0.15 & 0.3 \\ \end{array} \][/tex]
### Step 2: Calculate the Mean (Expected Value) [tex]\(\mu\)[/tex]
The mean (expected value) [tex]\(\mu\)[/tex] of a discrete random variable [tex]\( X \)[/tex] with probabilities [tex]\( P(X) \)[/tex] is calculated using the formula:
[tex]\[ \mu = E(X) = \sum_{i} X_i \cdot P(X_i) \][/tex]
Using the given values:
[tex]\[ \mu = (6 \cdot 0.05) + (7 \cdot 0.1) + (8 \cdot 0.3) + (9 \cdot 0.1) + (10 \cdot 0.15) + (11 \cdot 0.3) \][/tex]
Carrying out the calculations:
[tex]\[ \mu = 0.3 + 0.7 + 2.4 + 0.9 + 1.5 + 3.3 = 9.1 \][/tex]
Thus, the mean is:
[tex]\[ \mu = 9.1 \][/tex]
### Step 3: Calculate the Variance [tex]\(\sigma^2\)[/tex]
The variance [tex]\(\sigma^2\)[/tex] of a discrete random variable [tex]\( X \)[/tex] with probabilities [tex]\( P(X) \)[/tex] is given by the formula:
[tex]\[ \sigma^2 = \sum_{i} (X_i - \mu)^2 \cdot P(X_i) \][/tex]
We already have [tex]\(\mu = 9.1\)[/tex]. Now, we substitute and calculate:
[tex]\[ \sigma^2 = (6 - 9.1)^2 \cdot 0.05 + (7 - 9.1)^2 \cdot 0.1 + (8 - 9.1)^2 \cdot 0.3 + (9 - 9.1)^2 \cdot 0.1 + (10 - 9.1)^2 \cdot 0.15 + (11 - 9.1)^2 \cdot 0.3 \][/tex]
Breaking it down step-by-step, we compute each term:
[tex]\[ (6 - 9.1)^2 = (-3.1)^2 = 9.61 \][/tex]
[tex]\[ (7 - 9.1)^2 = (-2.1)^2 = 4.41 \][/tex]
[tex]\[ (8 - 9.1)^2 = (-1.1)^2 = 1.21 \][/tex]
[tex]\[ (9 - 9.1)^2 = (-0.1)^2 = 0.01 \][/tex]
[tex]\[ (10 - 9.1)^2 = (0.9)^2 = 0.81 \][/tex]
[tex]\[ (11 - 9.1)^2 = (1.9)^2 = 3.61 \][/tex]
Now, multiply each squared term by the corresponding probabilities:
[tex]\[ 0.05 \cdot 9.61 = 0.4805 \][/tex]
[tex]\[ 0.1 \cdot 4.41 = 0.441 \][/tex]
[tex]\[ 0.3 \cdot 1.21 = 0.363 \][/tex]
[tex]\[ 0.1 \cdot 0.01 = 0.001 \][/tex]
[tex]\[ 0.15 \cdot 0.81 = 0.1215 \][/tex]
[tex]\[ 0.3 \cdot 3.61 = 1.083 \][/tex]
Summing these products gives the variance:
[tex]\[ \sigma^2 = 0.4805 + 0.441 + 0.363 + 0.001 + 0.1215 + 1.083 = 2.49 \][/tex]
Rounding [tex]\(\sigma^2\)[/tex] to one decimal place, we get:
[tex]\[ \sigma^2 = 2.5 \][/tex]
Thus, the variance is:
[tex]\[ \sigma^2 = 2.5 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.