Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve this problem, we need to follow a few key steps. Let's break it down step by step.
### Step 1: Define the Random Variable and its Probability Distribution
We are given the random variable [tex]\( X \)[/tex] that takes values [tex]\( 6, 7, 8, 9, 10, 11 \)[/tex], with their corresponding probabilities as shown below:
[tex]\[ \begin{array}{c|cccccc} X & 6 & 7 & 8 & 9 & 10 & 11 \\ \hline P(X) & 0.05 & 0.1 & 0.3 & 0.1 & 0.15 & 0.3 \\ \end{array} \][/tex]
### Step 2: Calculate the Mean (Expected Value) [tex]\(\mu\)[/tex]
The mean (expected value) [tex]\(\mu\)[/tex] of a discrete random variable [tex]\( X \)[/tex] with probabilities [tex]\( P(X) \)[/tex] is calculated using the formula:
[tex]\[ \mu = E(X) = \sum_{i} X_i \cdot P(X_i) \][/tex]
Using the given values:
[tex]\[ \mu = (6 \cdot 0.05) + (7 \cdot 0.1) + (8 \cdot 0.3) + (9 \cdot 0.1) + (10 \cdot 0.15) + (11 \cdot 0.3) \][/tex]
Carrying out the calculations:
[tex]\[ \mu = 0.3 + 0.7 + 2.4 + 0.9 + 1.5 + 3.3 = 9.1 \][/tex]
Thus, the mean is:
[tex]\[ \mu = 9.1 \][/tex]
### Step 3: Calculate the Variance [tex]\(\sigma^2\)[/tex]
The variance [tex]\(\sigma^2\)[/tex] of a discrete random variable [tex]\( X \)[/tex] with probabilities [tex]\( P(X) \)[/tex] is given by the formula:
[tex]\[ \sigma^2 = \sum_{i} (X_i - \mu)^2 \cdot P(X_i) \][/tex]
We already have [tex]\(\mu = 9.1\)[/tex]. Now, we substitute and calculate:
[tex]\[ \sigma^2 = (6 - 9.1)^2 \cdot 0.05 + (7 - 9.1)^2 \cdot 0.1 + (8 - 9.1)^2 \cdot 0.3 + (9 - 9.1)^2 \cdot 0.1 + (10 - 9.1)^2 \cdot 0.15 + (11 - 9.1)^2 \cdot 0.3 \][/tex]
Breaking it down step-by-step, we compute each term:
[tex]\[ (6 - 9.1)^2 = (-3.1)^2 = 9.61 \][/tex]
[tex]\[ (7 - 9.1)^2 = (-2.1)^2 = 4.41 \][/tex]
[tex]\[ (8 - 9.1)^2 = (-1.1)^2 = 1.21 \][/tex]
[tex]\[ (9 - 9.1)^2 = (-0.1)^2 = 0.01 \][/tex]
[tex]\[ (10 - 9.1)^2 = (0.9)^2 = 0.81 \][/tex]
[tex]\[ (11 - 9.1)^2 = (1.9)^2 = 3.61 \][/tex]
Now, multiply each squared term by the corresponding probabilities:
[tex]\[ 0.05 \cdot 9.61 = 0.4805 \][/tex]
[tex]\[ 0.1 \cdot 4.41 = 0.441 \][/tex]
[tex]\[ 0.3 \cdot 1.21 = 0.363 \][/tex]
[tex]\[ 0.1 \cdot 0.01 = 0.001 \][/tex]
[tex]\[ 0.15 \cdot 0.81 = 0.1215 \][/tex]
[tex]\[ 0.3 \cdot 3.61 = 1.083 \][/tex]
Summing these products gives the variance:
[tex]\[ \sigma^2 = 0.4805 + 0.441 + 0.363 + 0.001 + 0.1215 + 1.083 = 2.49 \][/tex]
Rounding [tex]\(\sigma^2\)[/tex] to one decimal place, we get:
[tex]\[ \sigma^2 = 2.5 \][/tex]
Thus, the variance is:
[tex]\[ \sigma^2 = 2.5 \][/tex]
### Step 1: Define the Random Variable and its Probability Distribution
We are given the random variable [tex]\( X \)[/tex] that takes values [tex]\( 6, 7, 8, 9, 10, 11 \)[/tex], with their corresponding probabilities as shown below:
[tex]\[ \begin{array}{c|cccccc} X & 6 & 7 & 8 & 9 & 10 & 11 \\ \hline P(X) & 0.05 & 0.1 & 0.3 & 0.1 & 0.15 & 0.3 \\ \end{array} \][/tex]
### Step 2: Calculate the Mean (Expected Value) [tex]\(\mu\)[/tex]
The mean (expected value) [tex]\(\mu\)[/tex] of a discrete random variable [tex]\( X \)[/tex] with probabilities [tex]\( P(X) \)[/tex] is calculated using the formula:
[tex]\[ \mu = E(X) = \sum_{i} X_i \cdot P(X_i) \][/tex]
Using the given values:
[tex]\[ \mu = (6 \cdot 0.05) + (7 \cdot 0.1) + (8 \cdot 0.3) + (9 \cdot 0.1) + (10 \cdot 0.15) + (11 \cdot 0.3) \][/tex]
Carrying out the calculations:
[tex]\[ \mu = 0.3 + 0.7 + 2.4 + 0.9 + 1.5 + 3.3 = 9.1 \][/tex]
Thus, the mean is:
[tex]\[ \mu = 9.1 \][/tex]
### Step 3: Calculate the Variance [tex]\(\sigma^2\)[/tex]
The variance [tex]\(\sigma^2\)[/tex] of a discrete random variable [tex]\( X \)[/tex] with probabilities [tex]\( P(X) \)[/tex] is given by the formula:
[tex]\[ \sigma^2 = \sum_{i} (X_i - \mu)^2 \cdot P(X_i) \][/tex]
We already have [tex]\(\mu = 9.1\)[/tex]. Now, we substitute and calculate:
[tex]\[ \sigma^2 = (6 - 9.1)^2 \cdot 0.05 + (7 - 9.1)^2 \cdot 0.1 + (8 - 9.1)^2 \cdot 0.3 + (9 - 9.1)^2 \cdot 0.1 + (10 - 9.1)^2 \cdot 0.15 + (11 - 9.1)^2 \cdot 0.3 \][/tex]
Breaking it down step-by-step, we compute each term:
[tex]\[ (6 - 9.1)^2 = (-3.1)^2 = 9.61 \][/tex]
[tex]\[ (7 - 9.1)^2 = (-2.1)^2 = 4.41 \][/tex]
[tex]\[ (8 - 9.1)^2 = (-1.1)^2 = 1.21 \][/tex]
[tex]\[ (9 - 9.1)^2 = (-0.1)^2 = 0.01 \][/tex]
[tex]\[ (10 - 9.1)^2 = (0.9)^2 = 0.81 \][/tex]
[tex]\[ (11 - 9.1)^2 = (1.9)^2 = 3.61 \][/tex]
Now, multiply each squared term by the corresponding probabilities:
[tex]\[ 0.05 \cdot 9.61 = 0.4805 \][/tex]
[tex]\[ 0.1 \cdot 4.41 = 0.441 \][/tex]
[tex]\[ 0.3 \cdot 1.21 = 0.363 \][/tex]
[tex]\[ 0.1 \cdot 0.01 = 0.001 \][/tex]
[tex]\[ 0.15 \cdot 0.81 = 0.1215 \][/tex]
[tex]\[ 0.3 \cdot 3.61 = 1.083 \][/tex]
Summing these products gives the variance:
[tex]\[ \sigma^2 = 0.4805 + 0.441 + 0.363 + 0.001 + 0.1215 + 1.083 = 2.49 \][/tex]
Rounding [tex]\(\sigma^2\)[/tex] to one decimal place, we get:
[tex]\[ \sigma^2 = 2.5 \][/tex]
Thus, the variance is:
[tex]\[ \sigma^2 = 2.5 \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.