Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which solution is the most acidic, we need to identify which one has the highest concentration of hydronium ions [tex]\([H_3O^+]\)[/tex]. The higher the concentration of hydronium ions, the more acidic the solution is.
We are given four different concentrations:
- Two concentrations of hydroxide ions [tex]\([OH^-]\)[/tex]:
1. [tex]\([OH^-] = 2 \times 10^{-12} \text{M}\)[/tex]
2. [tex]\([OH^-] = 3 \times 10^{-3} \text{M}\)[/tex]
- Two concentrations of hydronium ions [tex]\([H_3O^+]\)[/tex]:
1. [tex]\([H_3O^+] = 4 \times 10^{-4} \text{M}\)[/tex]
2. [tex]\([H_3O^+] = 6 \times 10^{-6} \text{M}\)[/tex]
For the given [tex]\([OH^-]\)[/tex] concentrations, we need to convert them to [tex]\([H_3O^+]\)[/tex] using the relationship:
[tex]\[ [H_3O^+] \times [OH^-] = 1 \times 10^{-14} \][/tex]
Let's calculate the [tex]\([H_3O^+]\)[/tex] concentrations:
1. For [tex]\([OH^-] = 2 \times 10^{-12} \text{M}\)[/tex]:
[tex]\[ [H_3O^+] = \frac{1 \times 10^{-14}}{2 \times 10^{-12}} = \frac{1 \times 10^{-14}}{2 \times 10^{-12}} = 0.005 \text{M} \][/tex]
2. For [tex]\([OH^-] = 3 \times 10^{-3} \text{M}\)[/tex]:
[tex]\[ [H_3O^+] = \frac{1 \times 10^{-14}}{3 \times 10^{-3}} = \frac{1 \times 10^{-14}}{0.003} \approx 3.333 \times 10^{-12} \text{M} \][/tex]
Now, we have four [tex]\([H_3O^+]\)[/tex] concentrations:
1. From [tex]\([OH^-] = 2 \times 10^{-12} \text{M}\)[/tex]: [tex]\([H_3O^+] = 0.005 \text{M}\)[/tex]
2. From [tex]\([OH^-] = 3 \times 10^{-3} \text{M}\)[/tex]: [tex]\([H_3O^+] \approx 3.333 \times 10^{-12} \text{M}\)[/tex]
3. Given directly: [tex]\([H_3O^+] = 4 \times 10^{-4} \text{M}\)[/tex]
4. Given directly: [tex]\([H_3O^+] = 6 \times 10^{-6} \text{M}\)[/tex]
To find the most acidic solution, we compare these [tex]\([H_3O^+]\)[/tex] concentrations:
- [tex]\(0.005 \text{M}\)[/tex]
- [tex]\(3.333 \times 10^{-12} \text{M}\)[/tex]
- [tex]\(4 \times 10^{-4} \text{M}\)[/tex]
- [tex]\(6 \times 10^{-6} \text{M}\)[/tex]
Clearly, the highest [tex]\([H_3O^+]\)[/tex] concentration is [tex]\(0.005 \text{M}\)[/tex].
Therefore, the solution with [tex]\([OH^-] = 2 \times 10^{-12} \text{M}\)[/tex] is the most acidic.
We are given four different concentrations:
- Two concentrations of hydroxide ions [tex]\([OH^-]\)[/tex]:
1. [tex]\([OH^-] = 2 \times 10^{-12} \text{M}\)[/tex]
2. [tex]\([OH^-] = 3 \times 10^{-3} \text{M}\)[/tex]
- Two concentrations of hydronium ions [tex]\([H_3O^+]\)[/tex]:
1. [tex]\([H_3O^+] = 4 \times 10^{-4} \text{M}\)[/tex]
2. [tex]\([H_3O^+] = 6 \times 10^{-6} \text{M}\)[/tex]
For the given [tex]\([OH^-]\)[/tex] concentrations, we need to convert them to [tex]\([H_3O^+]\)[/tex] using the relationship:
[tex]\[ [H_3O^+] \times [OH^-] = 1 \times 10^{-14} \][/tex]
Let's calculate the [tex]\([H_3O^+]\)[/tex] concentrations:
1. For [tex]\([OH^-] = 2 \times 10^{-12} \text{M}\)[/tex]:
[tex]\[ [H_3O^+] = \frac{1 \times 10^{-14}}{2 \times 10^{-12}} = \frac{1 \times 10^{-14}}{2 \times 10^{-12}} = 0.005 \text{M} \][/tex]
2. For [tex]\([OH^-] = 3 \times 10^{-3} \text{M}\)[/tex]:
[tex]\[ [H_3O^+] = \frac{1 \times 10^{-14}}{3 \times 10^{-3}} = \frac{1 \times 10^{-14}}{0.003} \approx 3.333 \times 10^{-12} \text{M} \][/tex]
Now, we have four [tex]\([H_3O^+]\)[/tex] concentrations:
1. From [tex]\([OH^-] = 2 \times 10^{-12} \text{M}\)[/tex]: [tex]\([H_3O^+] = 0.005 \text{M}\)[/tex]
2. From [tex]\([OH^-] = 3 \times 10^{-3} \text{M}\)[/tex]: [tex]\([H_3O^+] \approx 3.333 \times 10^{-12} \text{M}\)[/tex]
3. Given directly: [tex]\([H_3O^+] = 4 \times 10^{-4} \text{M}\)[/tex]
4. Given directly: [tex]\([H_3O^+] = 6 \times 10^{-6} \text{M}\)[/tex]
To find the most acidic solution, we compare these [tex]\([H_3O^+]\)[/tex] concentrations:
- [tex]\(0.005 \text{M}\)[/tex]
- [tex]\(3.333 \times 10^{-12} \text{M}\)[/tex]
- [tex]\(4 \times 10^{-4} \text{M}\)[/tex]
- [tex]\(6 \times 10^{-6} \text{M}\)[/tex]
Clearly, the highest [tex]\([H_3O^+]\)[/tex] concentration is [tex]\(0.005 \text{M}\)[/tex].
Therefore, the solution with [tex]\([OH^-] = 2 \times 10^{-12} \text{M}\)[/tex] is the most acidic.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.