Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which solution is the most acidic, we need to identify which one has the highest concentration of hydronium ions [tex]\([H_3O^+]\)[/tex]. The higher the concentration of hydronium ions, the more acidic the solution is.
We are given four different concentrations:
- Two concentrations of hydroxide ions [tex]\([OH^-]\)[/tex]:
1. [tex]\([OH^-] = 2 \times 10^{-12} \text{M}\)[/tex]
2. [tex]\([OH^-] = 3 \times 10^{-3} \text{M}\)[/tex]
- Two concentrations of hydronium ions [tex]\([H_3O^+]\)[/tex]:
1. [tex]\([H_3O^+] = 4 \times 10^{-4} \text{M}\)[/tex]
2. [tex]\([H_3O^+] = 6 \times 10^{-6} \text{M}\)[/tex]
For the given [tex]\([OH^-]\)[/tex] concentrations, we need to convert them to [tex]\([H_3O^+]\)[/tex] using the relationship:
[tex]\[ [H_3O^+] \times [OH^-] = 1 \times 10^{-14} \][/tex]
Let's calculate the [tex]\([H_3O^+]\)[/tex] concentrations:
1. For [tex]\([OH^-] = 2 \times 10^{-12} \text{M}\)[/tex]:
[tex]\[ [H_3O^+] = \frac{1 \times 10^{-14}}{2 \times 10^{-12}} = \frac{1 \times 10^{-14}}{2 \times 10^{-12}} = 0.005 \text{M} \][/tex]
2. For [tex]\([OH^-] = 3 \times 10^{-3} \text{M}\)[/tex]:
[tex]\[ [H_3O^+] = \frac{1 \times 10^{-14}}{3 \times 10^{-3}} = \frac{1 \times 10^{-14}}{0.003} \approx 3.333 \times 10^{-12} \text{M} \][/tex]
Now, we have four [tex]\([H_3O^+]\)[/tex] concentrations:
1. From [tex]\([OH^-] = 2 \times 10^{-12} \text{M}\)[/tex]: [tex]\([H_3O^+] = 0.005 \text{M}\)[/tex]
2. From [tex]\([OH^-] = 3 \times 10^{-3} \text{M}\)[/tex]: [tex]\([H_3O^+] \approx 3.333 \times 10^{-12} \text{M}\)[/tex]
3. Given directly: [tex]\([H_3O^+] = 4 \times 10^{-4} \text{M}\)[/tex]
4. Given directly: [tex]\([H_3O^+] = 6 \times 10^{-6} \text{M}\)[/tex]
To find the most acidic solution, we compare these [tex]\([H_3O^+]\)[/tex] concentrations:
- [tex]\(0.005 \text{M}\)[/tex]
- [tex]\(3.333 \times 10^{-12} \text{M}\)[/tex]
- [tex]\(4 \times 10^{-4} \text{M}\)[/tex]
- [tex]\(6 \times 10^{-6} \text{M}\)[/tex]
Clearly, the highest [tex]\([H_3O^+]\)[/tex] concentration is [tex]\(0.005 \text{M}\)[/tex].
Therefore, the solution with [tex]\([OH^-] = 2 \times 10^{-12} \text{M}\)[/tex] is the most acidic.
We are given four different concentrations:
- Two concentrations of hydroxide ions [tex]\([OH^-]\)[/tex]:
1. [tex]\([OH^-] = 2 \times 10^{-12} \text{M}\)[/tex]
2. [tex]\([OH^-] = 3 \times 10^{-3} \text{M}\)[/tex]
- Two concentrations of hydronium ions [tex]\([H_3O^+]\)[/tex]:
1. [tex]\([H_3O^+] = 4 \times 10^{-4} \text{M}\)[/tex]
2. [tex]\([H_3O^+] = 6 \times 10^{-6} \text{M}\)[/tex]
For the given [tex]\([OH^-]\)[/tex] concentrations, we need to convert them to [tex]\([H_3O^+]\)[/tex] using the relationship:
[tex]\[ [H_3O^+] \times [OH^-] = 1 \times 10^{-14} \][/tex]
Let's calculate the [tex]\([H_3O^+]\)[/tex] concentrations:
1. For [tex]\([OH^-] = 2 \times 10^{-12} \text{M}\)[/tex]:
[tex]\[ [H_3O^+] = \frac{1 \times 10^{-14}}{2 \times 10^{-12}} = \frac{1 \times 10^{-14}}{2 \times 10^{-12}} = 0.005 \text{M} \][/tex]
2. For [tex]\([OH^-] = 3 \times 10^{-3} \text{M}\)[/tex]:
[tex]\[ [H_3O^+] = \frac{1 \times 10^{-14}}{3 \times 10^{-3}} = \frac{1 \times 10^{-14}}{0.003} \approx 3.333 \times 10^{-12} \text{M} \][/tex]
Now, we have four [tex]\([H_3O^+]\)[/tex] concentrations:
1. From [tex]\([OH^-] = 2 \times 10^{-12} \text{M}\)[/tex]: [tex]\([H_3O^+] = 0.005 \text{M}\)[/tex]
2. From [tex]\([OH^-] = 3 \times 10^{-3} \text{M}\)[/tex]: [tex]\([H_3O^+] \approx 3.333 \times 10^{-12} \text{M}\)[/tex]
3. Given directly: [tex]\([H_3O^+] = 4 \times 10^{-4} \text{M}\)[/tex]
4. Given directly: [tex]\([H_3O^+] = 6 \times 10^{-6} \text{M}\)[/tex]
To find the most acidic solution, we compare these [tex]\([H_3O^+]\)[/tex] concentrations:
- [tex]\(0.005 \text{M}\)[/tex]
- [tex]\(3.333 \times 10^{-12} \text{M}\)[/tex]
- [tex]\(4 \times 10^{-4} \text{M}\)[/tex]
- [tex]\(6 \times 10^{-6} \text{M}\)[/tex]
Clearly, the highest [tex]\([H_3O^+]\)[/tex] concentration is [tex]\(0.005 \text{M}\)[/tex].
Therefore, the solution with [tex]\([OH^-] = 2 \times 10^{-12} \text{M}\)[/tex] is the most acidic.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.