Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve this problem, we need to understand the relationship between the speeds involved and the distances traveled by the boat downstream and upstream. Let's define the following variables:
- [tex]\( b \)[/tex] = speed of the boat in still water (km/h)
- [tex]\( c \)[/tex] = speed of the current (km/h)
- [tex]\( t_d \)[/tex] = time traveled downstream (hours) = 7 hours
- [tex]\( t_u \)[/tex] = time traveled upstream (hours) = 7 hours
- [tex]\( d_s \)[/tex] = distance from the starting point after 7 hours downstream and 7 hours upstream (km) = 154 km
When the boat is traveling downstream, the current aids its journey. Therefore, the effective speed downstream is [tex]\( b + c \)[/tex]. Conversely, when the boat travels upstream, it is going against the current, so the effective speed is [tex]\( b - c \)[/tex].
The distance traveled downstream:
[tex]\[ \text{Distance}_{\text{downstream}} = (b + c) \times t_d = (b + c) \times 7 \][/tex]
The distance traveled upstream:
[tex]\[ \text{Distance}_{\text{upstream}} = (b - c) \times t_u = (b - c) \times 7 \][/tex]
According to the problem, after 7 hours downstream and 7 hours upstream, the boat is 154 km away from its starting point. Therefore, the equation is:
[tex]\[ 7(b + c) - 7(b - c) = 154 \][/tex]
We simplify the equation:
[tex]\[ 7b + 7c - 7b + 7c = 154 \][/tex]
[tex]\[ 14c = 154 \][/tex]
Solving for [tex]\( c \)[/tex]:
[tex]\[ c = \frac{154}{14} \][/tex]
[tex]\[ c = 11 \][/tex]
Thus, the speed of the current is [tex]\( 11 \)[/tex] km/h. Therefore, the correct answer is:
[tex]\[ \boxed{11 \text{ km/h}} \][/tex]
Among the provided options:
A) 20 km/h
B) 16 km/h
C) 11 km/h
D) 17 km/h
E) 13 km/h
The correct option is:
C) 11 km/h
- [tex]\( b \)[/tex] = speed of the boat in still water (km/h)
- [tex]\( c \)[/tex] = speed of the current (km/h)
- [tex]\( t_d \)[/tex] = time traveled downstream (hours) = 7 hours
- [tex]\( t_u \)[/tex] = time traveled upstream (hours) = 7 hours
- [tex]\( d_s \)[/tex] = distance from the starting point after 7 hours downstream and 7 hours upstream (km) = 154 km
When the boat is traveling downstream, the current aids its journey. Therefore, the effective speed downstream is [tex]\( b + c \)[/tex]. Conversely, when the boat travels upstream, it is going against the current, so the effective speed is [tex]\( b - c \)[/tex].
The distance traveled downstream:
[tex]\[ \text{Distance}_{\text{downstream}} = (b + c) \times t_d = (b + c) \times 7 \][/tex]
The distance traveled upstream:
[tex]\[ \text{Distance}_{\text{upstream}} = (b - c) \times t_u = (b - c) \times 7 \][/tex]
According to the problem, after 7 hours downstream and 7 hours upstream, the boat is 154 km away from its starting point. Therefore, the equation is:
[tex]\[ 7(b + c) - 7(b - c) = 154 \][/tex]
We simplify the equation:
[tex]\[ 7b + 7c - 7b + 7c = 154 \][/tex]
[tex]\[ 14c = 154 \][/tex]
Solving for [tex]\( c \)[/tex]:
[tex]\[ c = \frac{154}{14} \][/tex]
[tex]\[ c = 11 \][/tex]
Thus, the speed of the current is [tex]\( 11 \)[/tex] km/h. Therefore, the correct answer is:
[tex]\[ \boxed{11 \text{ km/h}} \][/tex]
Among the provided options:
A) 20 km/h
B) 16 km/h
C) 11 km/h
D) 17 km/h
E) 13 km/h
The correct option is:
C) 11 km/h
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.