Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To evaluate the expression [tex]\(\log_{19} 13\)[/tex] using either common logarithms (base 10) or natural logarithms (base [tex]\(e\)[/tex]), we can utilize the change-of-base formula.
The change-of-base formula states that for any positive numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] (where [tex]\(a \neq 1\)[/tex] and [tex]\(b \neq 1\)[/tex]):
[tex]$ \log_a b = \frac{\log_c b}{\log_c a} $[/tex]
In this case, we want to rewrite [tex]\(\log_{19} 13\)[/tex] using either common logarithms (base 10) or natural logarithms (base [tex]\(e\)[/tex]).
Let's rewrite it using common logarithms (base 10):
[tex]$ \log_{19} 13 = \frac{\log_{10} 13}{\log_{10} 19} $[/tex]
Alternatively, we can rewrite it using natural logarithms (base [tex]\(e\)[/tex]):
[tex]$ \log_{19} 13 = \frac{\ln 13}{\ln 19} $[/tex]
So, the expression [tex]\(\log_{19} 13\)[/tex] can be rewritten using the change-of-base property as:
[tex]$ \log_{19} 13 = \frac{\log 13}{\log 19} $[/tex]
or
[tex]$ \log_{19} 13 = \frac{\ln 13}{\ln 19} $[/tex]
Choose either form based on your preference for common logarithms or natural logarithms. Both forms are correct and equivalent.
The change-of-base formula states that for any positive numbers [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] (where [tex]\(a \neq 1\)[/tex] and [tex]\(b \neq 1\)[/tex]):
[tex]$ \log_a b = \frac{\log_c b}{\log_c a} $[/tex]
In this case, we want to rewrite [tex]\(\log_{19} 13\)[/tex] using either common logarithms (base 10) or natural logarithms (base [tex]\(e\)[/tex]).
Let's rewrite it using common logarithms (base 10):
[tex]$ \log_{19} 13 = \frac{\log_{10} 13}{\log_{10} 19} $[/tex]
Alternatively, we can rewrite it using natural logarithms (base [tex]\(e\)[/tex]):
[tex]$ \log_{19} 13 = \frac{\ln 13}{\ln 19} $[/tex]
So, the expression [tex]\(\log_{19} 13\)[/tex] can be rewritten using the change-of-base property as:
[tex]$ \log_{19} 13 = \frac{\log 13}{\log 19} $[/tex]
or
[tex]$ \log_{19} 13 = \frac{\ln 13}{\ln 19} $[/tex]
Choose either form based on your preference for common logarithms or natural logarithms. Both forms are correct and equivalent.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.