Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the equation of the line that passes through the points [tex]\((24, -3)\)[/tex] and [tex]\((12, -5)\)[/tex], we need to determine the slope and then use it to write the equation in different forms: Point-Slope Form, Slope-Intercept Form, and Standard Form.
### Finding the Slope
The slope [tex]\( m \)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
For the points [tex]\((24, -3)\)[/tex] and [tex]\((12, -5)\)[/tex]:
[tex]\[ m = \frac{-5 - (-3)}{12 - 24} = \frac{-5 + 3}{-12} = \frac{-2}{-12} = \frac{1}{6} \approx 0.1667 \][/tex]
### Point-Slope Form
The Point-Slope Form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using the point [tex]\((24, -3)\)[/tex] and the slope [tex]\( m \approx 0.1667 \)[/tex]:
[tex]\[ y - (-3) = \frac{1}{6}(x - 24) \][/tex]
So, the Point-Slope Form is:
[tex]\[ y + 3 = \frac{1}{6}(x - 24) \][/tex]
Or, in its approximate form:
[tex]\[ y - (-3) = 0.1667(x - 24) \][/tex]
### Slope-Intercept Form
The Slope-Intercept Form of the equation of a line is:
[tex]\[ y = mx + b \][/tex]
To find the y-intercept [tex]\( b \)[/tex], we'll use one of our points, for example, [tex]\((24, -3)\)[/tex]:
[tex]\[ -3 = \frac{1}{6} \cdot 24 + b \quad \Rightarrow \quad -3 = 4 + b \quad \Rightarrow \quad b = -7 \][/tex]
Thus, the Slope-Intercept Form is:
[tex]\[ y = \frac{1}{6}x - 7 \][/tex]
Or, in its approximate form:
[tex]\[ y = 0.1667x - 7 \][/tex]
### Standard Form
The Standard Form of the equation of a line is:
[tex]\[ Ax + By = C \][/tex]
Starting with the Slope-Intercept Form [tex]\( y = \frac{1}{6}x - 7 \)[/tex], we rearrange to Standard Form:
[tex]\[ y = \frac{1}{6}x - 7 \quad \Rightarrow \quad \frac{1}{6}x - y = 7 \quad \Rightarrow \quad x - 6y = 42 \][/tex]
So, the Standard Form is:
[tex]\[ x - 6y = 42 \][/tex]
Or, using exact forms from earlier calculations:
[tex]\[ -\frac{1}{6}x + y = -7 \][/tex]
Multiplied by 6 to clear the fraction:
So the consistent final form is:
[tex]\[ -x + 6y = -42 \][/tex]
### Summary
1. Point-Slope Form: [tex]\(\boldsymbol{y + 3 = \frac{1}{6}(x - 24)}\)[/tex]
2. Slope-Intercept Form: [tex]\(\boldsymbol{y = \frac{1}{6}x - 7}\)[/tex]
3. Standard Form: [tex]\(\boldsymbol{x - 6y = 42}\)[/tex]
These are the equations in their respective forms for the line passing through the points [tex]\((24, -3)\)[/tex] and [tex]\((12, -5)\)[/tex].
To solve and graph inequalities was mentioned but no inequalities are provided. If you need additional help with that part, please provide the inequalities.
### Finding the Slope
The slope [tex]\( m \)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
For the points [tex]\((24, -3)\)[/tex] and [tex]\((12, -5)\)[/tex]:
[tex]\[ m = \frac{-5 - (-3)}{12 - 24} = \frac{-5 + 3}{-12} = \frac{-2}{-12} = \frac{1}{6} \approx 0.1667 \][/tex]
### Point-Slope Form
The Point-Slope Form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
Using the point [tex]\((24, -3)\)[/tex] and the slope [tex]\( m \approx 0.1667 \)[/tex]:
[tex]\[ y - (-3) = \frac{1}{6}(x - 24) \][/tex]
So, the Point-Slope Form is:
[tex]\[ y + 3 = \frac{1}{6}(x - 24) \][/tex]
Or, in its approximate form:
[tex]\[ y - (-3) = 0.1667(x - 24) \][/tex]
### Slope-Intercept Form
The Slope-Intercept Form of the equation of a line is:
[tex]\[ y = mx + b \][/tex]
To find the y-intercept [tex]\( b \)[/tex], we'll use one of our points, for example, [tex]\((24, -3)\)[/tex]:
[tex]\[ -3 = \frac{1}{6} \cdot 24 + b \quad \Rightarrow \quad -3 = 4 + b \quad \Rightarrow \quad b = -7 \][/tex]
Thus, the Slope-Intercept Form is:
[tex]\[ y = \frac{1}{6}x - 7 \][/tex]
Or, in its approximate form:
[tex]\[ y = 0.1667x - 7 \][/tex]
### Standard Form
The Standard Form of the equation of a line is:
[tex]\[ Ax + By = C \][/tex]
Starting with the Slope-Intercept Form [tex]\( y = \frac{1}{6}x - 7 \)[/tex], we rearrange to Standard Form:
[tex]\[ y = \frac{1}{6}x - 7 \quad \Rightarrow \quad \frac{1}{6}x - y = 7 \quad \Rightarrow \quad x - 6y = 42 \][/tex]
So, the Standard Form is:
[tex]\[ x - 6y = 42 \][/tex]
Or, using exact forms from earlier calculations:
[tex]\[ -\frac{1}{6}x + y = -7 \][/tex]
Multiplied by 6 to clear the fraction:
So the consistent final form is:
[tex]\[ -x + 6y = -42 \][/tex]
### Summary
1. Point-Slope Form: [tex]\(\boldsymbol{y + 3 = \frac{1}{6}(x - 24)}\)[/tex]
2. Slope-Intercept Form: [tex]\(\boldsymbol{y = \frac{1}{6}x - 7}\)[/tex]
3. Standard Form: [tex]\(\boldsymbol{x - 6y = 42}\)[/tex]
These are the equations in their respective forms for the line passing through the points [tex]\((24, -3)\)[/tex] and [tex]\((12, -5)\)[/tex].
To solve and graph inequalities was mentioned but no inequalities are provided. If you need additional help with that part, please provide the inequalities.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.