Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which rational function has a horizontal asymptote at [tex]\( y = 3 \)[/tex] and vertical asymptotes at [tex]\( x = 4 \)[/tex] and [tex]\( x = -3 \)[/tex], let’s analyze each of the functions step-by-step.
### Horizontal Asymptote Analysis
The horizontal asymptote of a rational function is determined by the degrees of the numerator and denominator:
1. If the degrees are the same, the horizontal asymptote [tex]\( y = \frac{a}{b} \)[/tex] is found by dividing the leading coefficients.
2. If the degree of the numerator is less than the denominator, the horizontal asymptote is [tex]\( y = 0 \)[/tex].
3. If the degree of the numerator is greater than the denominator, there is no horizontal asymptote.
For [tex]\( y = 3 \)[/tex], the degrees must be the same and the quotient of the leading coefficients must be 3.
### Vertical Asymptote Analysis
Vertical asymptotes occur where the denominator is zero, and the numerator is non-zero. We analyze the denominator to find these points.
### Checking the Given Functions
#### Function 1: [tex]\( y = \frac{x^2}{x^2 - x - 12} \)[/tex]
1. Factor the denominator: [tex]\( x^2 - x - 12 \)[/tex]
[tex]\[ x^2 - x - 12 = (x - 4)(x + 3) \][/tex]
2. Vertical asymptotes at [tex]\( x = 4 \)[/tex] and [tex]\( x = -3 \)[/tex].
3. Horizontal asymptote:
[tex]\[ \text{Leading coefficients ratio} = \frac{1}{1} = 1 \][/tex]
- Horizontal asymptote at [tex]\( y = 1 \)[/tex].
This does not satisfy [tex]\( y = 3 \)[/tex] as the horizontal asymptote.
#### Function 2: [tex]\( y = \frac{x^2}{x^2 + x - 12} \)[/tex]
1. Factor the denominator: [tex]\( x^2 + x - 12 \)[/tex]
[tex]\[ x^2 + x - 12 = (x + 4)(x - 3) \][/tex]
2. Vertical asymptotes at [tex]\( x = -4 \)[/tex] and [tex]\( x = 3 \)[/tex] (different from given).
3. Horizontal asymptote:
[tex]\[ \text{Leading coefficients ratio} = \frac{1}{1} = 1 \][/tex]
- Horizontal asymptote at [tex]\( y = 1 \)[/tex].
This does not match vertical asymptotes or horizontal asymptote conditions.
#### Function 3: [tex]\( y = \frac{3x^2}{x^2 - x - 12} \)[/tex]
1. Factor the denominator: [tex]\( x^2 - x - 12 \)[/tex]
[tex]\[ x^2 - x - 12 = (x - 4)(x + 3) \][/tex]
2. Vertical asymptotes at [tex]\( x = 4 \)[/tex] and [tex]\( x = -3 \)[/tex].
3. Horizontal asymptote:
[tex]\[ \text{Leading coefficients ratio} = \frac{3}{1} = 3 \][/tex]
- Horizontal asymptote at [tex]\( y = 3 \)[/tex].
This matches both vertical and horizontal asymptote conditions.
#### Function 4: [tex]\( y = \frac{3x^2}{x^2 + x - 12} \)[/tex]
1. Factor the denominator: [tex]\( x^2 + x - 12 \)[/tex]
[tex]\[ x^2 + x - 12 = (x + 4)(x - 3) \][/tex]
2. Vertical asymptotes at [tex]\( x = -4 \)[/tex] and [tex]\( x = 3 \)[/tex] (different from given).
3. Horizontal asymptote:
[tex]\[ \text{Leading coefficients ratio} = \frac{3}{1} = 3 \][/tex]
- Horizontal asymptote at [tex]\( y = 3 \)[/tex].
This does not match vertical asymptote conditions.
### Conclusion
Only Function 3 [tex]\( y = \frac{3x^2}{x^2 - x - 12} \)[/tex] meets the required horizontal asymptote at [tex]\( y = 3 \)[/tex] and vertical asymptotes at [tex]\( x = 4 \)[/tex] and [tex]\( x = -3 \)[/tex].
The correct function is:
[tex]\[ \boxed{y = \frac{3x^2}{x^2 - x - 12}} \][/tex] and the corresponding number is [tex]\( \boxed{3} \)[/tex].
### Horizontal Asymptote Analysis
The horizontal asymptote of a rational function is determined by the degrees of the numerator and denominator:
1. If the degrees are the same, the horizontal asymptote [tex]\( y = \frac{a}{b} \)[/tex] is found by dividing the leading coefficients.
2. If the degree of the numerator is less than the denominator, the horizontal asymptote is [tex]\( y = 0 \)[/tex].
3. If the degree of the numerator is greater than the denominator, there is no horizontal asymptote.
For [tex]\( y = 3 \)[/tex], the degrees must be the same and the quotient of the leading coefficients must be 3.
### Vertical Asymptote Analysis
Vertical asymptotes occur where the denominator is zero, and the numerator is non-zero. We analyze the denominator to find these points.
### Checking the Given Functions
#### Function 1: [tex]\( y = \frac{x^2}{x^2 - x - 12} \)[/tex]
1. Factor the denominator: [tex]\( x^2 - x - 12 \)[/tex]
[tex]\[ x^2 - x - 12 = (x - 4)(x + 3) \][/tex]
2. Vertical asymptotes at [tex]\( x = 4 \)[/tex] and [tex]\( x = -3 \)[/tex].
3. Horizontal asymptote:
[tex]\[ \text{Leading coefficients ratio} = \frac{1}{1} = 1 \][/tex]
- Horizontal asymptote at [tex]\( y = 1 \)[/tex].
This does not satisfy [tex]\( y = 3 \)[/tex] as the horizontal asymptote.
#### Function 2: [tex]\( y = \frac{x^2}{x^2 + x - 12} \)[/tex]
1. Factor the denominator: [tex]\( x^2 + x - 12 \)[/tex]
[tex]\[ x^2 + x - 12 = (x + 4)(x - 3) \][/tex]
2. Vertical asymptotes at [tex]\( x = -4 \)[/tex] and [tex]\( x = 3 \)[/tex] (different from given).
3. Horizontal asymptote:
[tex]\[ \text{Leading coefficients ratio} = \frac{1}{1} = 1 \][/tex]
- Horizontal asymptote at [tex]\( y = 1 \)[/tex].
This does not match vertical asymptotes or horizontal asymptote conditions.
#### Function 3: [tex]\( y = \frac{3x^2}{x^2 - x - 12} \)[/tex]
1. Factor the denominator: [tex]\( x^2 - x - 12 \)[/tex]
[tex]\[ x^2 - x - 12 = (x - 4)(x + 3) \][/tex]
2. Vertical asymptotes at [tex]\( x = 4 \)[/tex] and [tex]\( x = -3 \)[/tex].
3. Horizontal asymptote:
[tex]\[ \text{Leading coefficients ratio} = \frac{3}{1} = 3 \][/tex]
- Horizontal asymptote at [tex]\( y = 3 \)[/tex].
This matches both vertical and horizontal asymptote conditions.
#### Function 4: [tex]\( y = \frac{3x^2}{x^2 + x - 12} \)[/tex]
1. Factor the denominator: [tex]\( x^2 + x - 12 \)[/tex]
[tex]\[ x^2 + x - 12 = (x + 4)(x - 3) \][/tex]
2. Vertical asymptotes at [tex]\( x = -4 \)[/tex] and [tex]\( x = 3 \)[/tex] (different from given).
3. Horizontal asymptote:
[tex]\[ \text{Leading coefficients ratio} = \frac{3}{1} = 3 \][/tex]
- Horizontal asymptote at [tex]\( y = 3 \)[/tex].
This does not match vertical asymptote conditions.
### Conclusion
Only Function 3 [tex]\( y = \frac{3x^2}{x^2 - x - 12} \)[/tex] meets the required horizontal asymptote at [tex]\( y = 3 \)[/tex] and vertical asymptotes at [tex]\( x = 4 \)[/tex] and [tex]\( x = -3 \)[/tex].
The correct function is:
[tex]\[ \boxed{y = \frac{3x^2}{x^2 - x - 12}} \][/tex] and the corresponding number is [tex]\( \boxed{3} \)[/tex].
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.