Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To translate the sentence "Twice the difference of a number and 4 is less than -25" into an inequality, we can follow these steps:
1. Identify the variable: Let [tex]\( c \)[/tex] represent the unknown number.
2. Translate the phrases into mathematical expressions:
- "The difference of a number and 4" translates to [tex]\( c - 4 \)[/tex].
- "Twice" translates to multiplying by 2.
- "Is less than" is represented by the inequality symbol [tex]\( < \)[/tex].
- The number -25 remains as is.
3. Form the inequality:
- Twice the difference of a number and 4 can be written as [tex]\( 2 \times (c - 4) \)[/tex].
- So, we have [tex]\( 2 \times (c - 4) < -25 \)[/tex].
4. Simplify the inequality:
- Distribute the 2: [tex]\( 2(c - 4) < -25 \)[/tex].
- This becomes [tex]\( 2c - 8 < -25 \)[/tex].
5. Solve the inequality:
- Add 8 to both sides to isolate the term with the variable: [tex]\( 2c - 8 + 8 < -25 + 8 \)[/tex].
- Simplify the inequality: [tex]\( 2c < -17 \)[/tex].
- Finally, divide both sides by 2: [tex]\( c < -8.5 \)[/tex].
So, the inequality that represents "Twice the difference of a number and 4 is less than -25" is [tex]\( c < -8.5 \)[/tex].
1. Identify the variable: Let [tex]\( c \)[/tex] represent the unknown number.
2. Translate the phrases into mathematical expressions:
- "The difference of a number and 4" translates to [tex]\( c - 4 \)[/tex].
- "Twice" translates to multiplying by 2.
- "Is less than" is represented by the inequality symbol [tex]\( < \)[/tex].
- The number -25 remains as is.
3. Form the inequality:
- Twice the difference of a number and 4 can be written as [tex]\( 2 \times (c - 4) \)[/tex].
- So, we have [tex]\( 2 \times (c - 4) < -25 \)[/tex].
4. Simplify the inequality:
- Distribute the 2: [tex]\( 2(c - 4) < -25 \)[/tex].
- This becomes [tex]\( 2c - 8 < -25 \)[/tex].
5. Solve the inequality:
- Add 8 to both sides to isolate the term with the variable: [tex]\( 2c - 8 + 8 < -25 + 8 \)[/tex].
- Simplify the inequality: [tex]\( 2c < -17 \)[/tex].
- Finally, divide both sides by 2: [tex]\( c < -8.5 \)[/tex].
So, the inequality that represents "Twice the difference of a number and 4 is less than -25" is [tex]\( c < -8.5 \)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.