Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To translate the sentence "Twice the difference of a number and 4 is less than -25" into an inequality, we can follow these steps:
1. Identify the variable: Let [tex]\( c \)[/tex] represent the unknown number.
2. Translate the phrases into mathematical expressions:
- "The difference of a number and 4" translates to [tex]\( c - 4 \)[/tex].
- "Twice" translates to multiplying by 2.
- "Is less than" is represented by the inequality symbol [tex]\( < \)[/tex].
- The number -25 remains as is.
3. Form the inequality:
- Twice the difference of a number and 4 can be written as [tex]\( 2 \times (c - 4) \)[/tex].
- So, we have [tex]\( 2 \times (c - 4) < -25 \)[/tex].
4. Simplify the inequality:
- Distribute the 2: [tex]\( 2(c - 4) < -25 \)[/tex].
- This becomes [tex]\( 2c - 8 < -25 \)[/tex].
5. Solve the inequality:
- Add 8 to both sides to isolate the term with the variable: [tex]\( 2c - 8 + 8 < -25 + 8 \)[/tex].
- Simplify the inequality: [tex]\( 2c < -17 \)[/tex].
- Finally, divide both sides by 2: [tex]\( c < -8.5 \)[/tex].
So, the inequality that represents "Twice the difference of a number and 4 is less than -25" is [tex]\( c < -8.5 \)[/tex].
1. Identify the variable: Let [tex]\( c \)[/tex] represent the unknown number.
2. Translate the phrases into mathematical expressions:
- "The difference of a number and 4" translates to [tex]\( c - 4 \)[/tex].
- "Twice" translates to multiplying by 2.
- "Is less than" is represented by the inequality symbol [tex]\( < \)[/tex].
- The number -25 remains as is.
3. Form the inequality:
- Twice the difference of a number and 4 can be written as [tex]\( 2 \times (c - 4) \)[/tex].
- So, we have [tex]\( 2 \times (c - 4) < -25 \)[/tex].
4. Simplify the inequality:
- Distribute the 2: [tex]\( 2(c - 4) < -25 \)[/tex].
- This becomes [tex]\( 2c - 8 < -25 \)[/tex].
5. Solve the inequality:
- Add 8 to both sides to isolate the term with the variable: [tex]\( 2c - 8 + 8 < -25 + 8 \)[/tex].
- Simplify the inequality: [tex]\( 2c < -17 \)[/tex].
- Finally, divide both sides by 2: [tex]\( c < -8.5 \)[/tex].
So, the inequality that represents "Twice the difference of a number and 4 is less than -25" is [tex]\( c < -8.5 \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.