Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Given the polynomial function:
[tex]\[ f(x) = 6x^3 - 61x^2 + 65x - 18 \][/tex]
Let's solve this step-by-step:
### a) List all possible rational zeros
According to the Rational Root Theorem, the possible rational zeros of a polynomial [tex]\( f(x) \)[/tex] are the ratios [tex]\(\pm \frac{p}{q}\)[/tex], where [tex]\( p \)[/tex] is a factor of the constant term (the last term) and [tex]\( q \)[/tex] is a factor of the leading coefficient (the coefficient of the highest degree term).
1. The constant term of [tex]\( f(x) \)[/tex] is [tex]\(-18\)[/tex]. The factors of [tex]\(-18\)[/tex] are:
[tex]\(\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18 \)[/tex].
2. The leading coefficient of [tex]\( f(x) \)[/tex] is [tex]\( 6 \)[/tex]. The factors of [tex]\( 6 \)[/tex] are:
[tex]\(\pm 1, \pm 2, \pm 3, \pm 6 \)[/tex].
Now, list all possible ratios [tex]\(\pm \frac{p}{q}\)[/tex]:
[tex]\[ \pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{6}, \pm 2, \pm \frac{2}{3}, \pm \frac{3}{2}, \pm 3, \pm 6, \pm 9, \pm \frac{9}{2}, \pm 18 \][/tex]
So, the answer is:
[tex]\[ \pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{6}, \pm 2, \pm \frac{2}{3}, \pm \frac{3}{2}, \pm 3, \pm 6, \pm 9, \pm \frac{9}{2}, \pm 18 \][/tex]
### b) Find all rational zeros
The rational zeros found for [tex]\( f(x) \)[/tex] are [tex]\( \frac{1}{2} \)[/tex] and [tex]\( 9 \)[/tex].
So, the answer is [tex]\( \boxed{0.5 \text{ and } 9} \)[/tex] (equivalently [tex]\( \frac{1}{2} \)[/tex] and 9).
### c) Factor [tex]\( f(x) \)[/tex]
Given the rational roots, we can factorize the polynomial:
Using the rational zeros [tex]\( \frac{1}{2} \)[/tex] and [tex]\( 9 \)[/tex], the polynomial can be factored as:
[tex]\[ f(x) = 6 \cdot (x - 9) \cdot (2x - 1) \cdot (3x - 2) \][/tex]
Written as polynomial factors, it is:
[tex]\[ f(x) = (x - 9)(2x - 1)(3x - 2) \][/tex]
So, the final factorization of [tex]\( f(x) \)[/tex] is:
[tex]\[ \boxed{(x - 9)(2x - 1)(3x - 2)} \][/tex]
### Conclusion
- Possible rational zeros: [tex]\( \pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{6}, \pm 2, \pm \frac{2}{3}, \pm \frac{3}{2}, \pm 3, \pm 6, \pm 9, \pm \frac{9}{2}, \pm 18 \)[/tex].
- Rational zeros: [tex]\( \frac{1}{2} \)[/tex] and [tex]\( 9 \)[/tex].
- Polynomial factorization: [tex]\( (x - 9)(2x - 1)(3x - 2) \)[/tex].
Among the provided answer choices, the correct ones based on the questions are:
(b) Determine the rational zeros for [tex]\( f(x) \)[/tex]:
Answer: [tex]\( \boxed{B. \; 9, \frac{1}{2}, \frac{2}{3}} \)[/tex]
(although note that [tex]\(2/3\)[/tex] is included in the answer, the actual zeros known from given are [tex]\(9\)[/tex] and [tex]\(1/2\)[/tex]).
[tex]\[ f(x) = 6x^3 - 61x^2 + 65x - 18 \][/tex]
Let's solve this step-by-step:
### a) List all possible rational zeros
According to the Rational Root Theorem, the possible rational zeros of a polynomial [tex]\( f(x) \)[/tex] are the ratios [tex]\(\pm \frac{p}{q}\)[/tex], where [tex]\( p \)[/tex] is a factor of the constant term (the last term) and [tex]\( q \)[/tex] is a factor of the leading coefficient (the coefficient of the highest degree term).
1. The constant term of [tex]\( f(x) \)[/tex] is [tex]\(-18\)[/tex]. The factors of [tex]\(-18\)[/tex] are:
[tex]\(\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18 \)[/tex].
2. The leading coefficient of [tex]\( f(x) \)[/tex] is [tex]\( 6 \)[/tex]. The factors of [tex]\( 6 \)[/tex] are:
[tex]\(\pm 1, \pm 2, \pm 3, \pm 6 \)[/tex].
Now, list all possible ratios [tex]\(\pm \frac{p}{q}\)[/tex]:
[tex]\[ \pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{6}, \pm 2, \pm \frac{2}{3}, \pm \frac{3}{2}, \pm 3, \pm 6, \pm 9, \pm \frac{9}{2}, \pm 18 \][/tex]
So, the answer is:
[tex]\[ \pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{6}, \pm 2, \pm \frac{2}{3}, \pm \frac{3}{2}, \pm 3, \pm 6, \pm 9, \pm \frac{9}{2}, \pm 18 \][/tex]
### b) Find all rational zeros
The rational zeros found for [tex]\( f(x) \)[/tex] are [tex]\( \frac{1}{2} \)[/tex] and [tex]\( 9 \)[/tex].
So, the answer is [tex]\( \boxed{0.5 \text{ and } 9} \)[/tex] (equivalently [tex]\( \frac{1}{2} \)[/tex] and 9).
### c) Factor [tex]\( f(x) \)[/tex]
Given the rational roots, we can factorize the polynomial:
Using the rational zeros [tex]\( \frac{1}{2} \)[/tex] and [tex]\( 9 \)[/tex], the polynomial can be factored as:
[tex]\[ f(x) = 6 \cdot (x - 9) \cdot (2x - 1) \cdot (3x - 2) \][/tex]
Written as polynomial factors, it is:
[tex]\[ f(x) = (x - 9)(2x - 1)(3x - 2) \][/tex]
So, the final factorization of [tex]\( f(x) \)[/tex] is:
[tex]\[ \boxed{(x - 9)(2x - 1)(3x - 2)} \][/tex]
### Conclusion
- Possible rational zeros: [tex]\( \pm 1, \pm \frac{1}{2}, \pm \frac{1}{3}, \pm \frac{1}{6}, \pm 2, \pm \frac{2}{3}, \pm \frac{3}{2}, \pm 3, \pm 6, \pm 9, \pm \frac{9}{2}, \pm 18 \)[/tex].
- Rational zeros: [tex]\( \frac{1}{2} \)[/tex] and [tex]\( 9 \)[/tex].
- Polynomial factorization: [tex]\( (x - 9)(2x - 1)(3x - 2) \)[/tex].
Among the provided answer choices, the correct ones based on the questions are:
(b) Determine the rational zeros for [tex]\( f(x) \)[/tex]:
Answer: [tex]\( \boxed{B. \; 9, \frac{1}{2}, \frac{2}{3}} \)[/tex]
(although note that [tex]\(2/3\)[/tex] is included in the answer, the actual zeros known from given are [tex]\(9\)[/tex] and [tex]\(1/2\)[/tex]).
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.