Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the volume of the right rectangular prism whose height is 3 units greater than the side length of its square base, we need to follow these steps:
1. Understand the dimensions of the prism:
- The length of the base is [tex]\( x \)[/tex] units.
- The width of the base is also [tex]\( x \)[/tex] units, since it is a square base.
- The height of the prism is [tex]\( x + 3 \)[/tex] units because it is given that the height is 3 units greater than the length of the base.
2. Write the formula for the volume of a right rectangular prism:
The volume [tex]\( V \)[/tex] of a right rectangular prism can be calculated using the formula:
[tex]\[ V = \text{base\_area} \times \text{height} \][/tex]
3. Calculate the base area:
The base is a square with each side of length [tex]\( x \)[/tex] units.
[tex]\[ \text{base\_area} = x \times x = x^2 \][/tex]
4. Calculate the volume:
Using the base area and the height, the volume of the prism can be calculated as:
[tex]\[ V = \text{base\_area} \times \text{height} = x^2 \times (x + 3) \][/tex]
5. Simplify the expression:
We need to expand the expression [tex]\( x^2 \times (x + 3) \)[/tex]:
[tex]\[ x^2 \times (x + 3) = x^2 \times x + x^2 \times 3 = x^3 + 3x^2 \][/tex]
So, the expression that represents the volume of the prism, in cubic units, is [tex]\( x^3 + 3x^2 \)[/tex].
Therefore, the correct answer is:
[tex]\[ x^3 + 3x^2 \][/tex]
1. Understand the dimensions of the prism:
- The length of the base is [tex]\( x \)[/tex] units.
- The width of the base is also [tex]\( x \)[/tex] units, since it is a square base.
- The height of the prism is [tex]\( x + 3 \)[/tex] units because it is given that the height is 3 units greater than the length of the base.
2. Write the formula for the volume of a right rectangular prism:
The volume [tex]\( V \)[/tex] of a right rectangular prism can be calculated using the formula:
[tex]\[ V = \text{base\_area} \times \text{height} \][/tex]
3. Calculate the base area:
The base is a square with each side of length [tex]\( x \)[/tex] units.
[tex]\[ \text{base\_area} = x \times x = x^2 \][/tex]
4. Calculate the volume:
Using the base area and the height, the volume of the prism can be calculated as:
[tex]\[ V = \text{base\_area} \times \text{height} = x^2 \times (x + 3) \][/tex]
5. Simplify the expression:
We need to expand the expression [tex]\( x^2 \times (x + 3) \)[/tex]:
[tex]\[ x^2 \times (x + 3) = x^2 \times x + x^2 \times 3 = x^3 + 3x^2 \][/tex]
So, the expression that represents the volume of the prism, in cubic units, is [tex]\( x^3 + 3x^2 \)[/tex].
Therefore, the correct answer is:
[tex]\[ x^3 + 3x^2 \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.