At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

A solid right pyramid has a square base with an edge length of [tex]s[/tex] units and a height of [tex]h[/tex] units.

Which expression represents the volume of the pyramid?

A. [tex]\frac{1}{4} s^2 h[/tex] units[tex]^3[/tex]
B. [tex]\frac{1}{3} s^2 h[/tex] units[tex]^3[/tex]
C. [tex]s^2 h[/tex] units[tex]^3[/tex]
D. [tex]3 s^2 h[/tex] units[tex]^3[/tex]


Sagot :

To determine the volume of a solid right pyramid with a square base of edge length [tex]\( s \)[/tex] units and height [tex]\( h \)[/tex] units, we can use the well-known formula for the volume of a pyramid. The formula is:

[tex]\[ V = \frac{1}{3} \times (\text{base area}) \times (\text{height}) \][/tex]

1. Calculate the base area:
- Since the base is a square, the area of the base is given by the square of the edge length [tex]\( s \)[/tex]:
[tex]\[ \text{Base area} = s^2 \][/tex]

2. Substitute the base area and height into the volume formula:
- We substitute [tex]\( s^2 \)[/tex] for the base area and [tex]\( h \)[/tex] for the height:
[tex]\[ V = \frac{1}{3} \times s^2 \times h \][/tex]

3. Simplify the expression:
- The expression already appears in its simplest form:
[tex]\[ V = \frac{1}{3} s^2 h \][/tex]

Given this formula, the expression that represents the volume of the pyramid is:
[tex]\[ \frac{1}{3} s^2 h \text{ units}^3 \][/tex]

Therefore, the correct choice among the options is:
[tex]\[ \frac{1}{3} s^2 h \text{ units}^3 \][/tex]