Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To answer this question, we will use the Rational Zero Theorem. This theorem states that any rational solution of the polynomial equation [tex]\( P(x) = 0 \)[/tex] is a fraction [tex]\(\frac{p}{q}\)[/tex], where [tex]\( p \)[/tex] is a factor of the constant term and [tex]\( q \)[/tex] is a factor of the leading coefficient.
Given the polynomial equation:
[tex]\[ 8x^3 + 50x^2 - 41x + 7 = 0 \][/tex]
1. Identify the constant term and its factors:
The constant term is [tex]\( 7 \)[/tex]. The factors of [tex]\( 7 \)[/tex] are:
[tex]\[ \pm 1, \pm 7 \][/tex]
2. Identify the leading coefficient and its factors:
The leading coefficient is [tex]\( 8 \)[/tex]. The factors of [tex]\( 8 \)[/tex] are:
[tex]\[ \pm 1, \pm 2, \pm 4, \pm 8 \][/tex]
3. Formulate all possible rational roots:
According to the Rational Zero Theorem, the possible rational roots are given by all possible values of [tex]\( \frac{p}{q} \)[/tex], where [tex]\( p \)[/tex] is a factor of the constant term ([tex]\( \pm 1, \pm 7 \)[/tex]) and [tex]\( q \)[/tex] is a factor of the leading coefficient ([tex]\( \pm 1, \pm 2, \pm 4, \pm 8 \)[/tex]).
Combining these, we get the possible rational roots:
[tex]\[ \pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}, \pm 7, \pm \frac{7}{2}, \pm \frac{7}{4}, \pm \frac{7}{8} \][/tex]
Thus, listing all the possible rational roots, we have:
[tex]\[ \{\pm 1, \pm 7, \pm \frac{1}{2}, \pm \frac{7}{2}, \pm \frac{1}{4}, \pm \frac{7}{4}, \pm \frac{1}{8}, \pm \frac{7}{8}\} \][/tex]
Given the multiple-choice options:
A. [tex]\(\pm 1, \pm 7\)[/tex]
B. [tex]\(\pm 1, \pm 2, \pm 4, \pm 8\)[/tex]
C. [tex]\(\pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{7}, \pm \frac{2}{7}, \pm \frac{4}{7}, \pm \frac{8}{7}\)[/tex]
D. [tex]\(\pm 1, \pm 7, \pm \frac{1}{2}, \pm \frac{7}{2}, \pm \frac{1}{4}, \pm \frac{7}{4}, \pm \frac{1}{8}, \pm \frac{7}{8}\)[/tex]
The correct answer is:
D. [tex]\(\pm 1, \pm 7, \pm \frac{1}{2}, \pm \frac{7}{2}, \pm \frac{1}{4}, \pm \frac{7}{4}, \pm \frac{1}{8}, \pm \frac{7}{8}\)[/tex]
Given the polynomial equation:
[tex]\[ 8x^3 + 50x^2 - 41x + 7 = 0 \][/tex]
1. Identify the constant term and its factors:
The constant term is [tex]\( 7 \)[/tex]. The factors of [tex]\( 7 \)[/tex] are:
[tex]\[ \pm 1, \pm 7 \][/tex]
2. Identify the leading coefficient and its factors:
The leading coefficient is [tex]\( 8 \)[/tex]. The factors of [tex]\( 8 \)[/tex] are:
[tex]\[ \pm 1, \pm 2, \pm 4, \pm 8 \][/tex]
3. Formulate all possible rational roots:
According to the Rational Zero Theorem, the possible rational roots are given by all possible values of [tex]\( \frac{p}{q} \)[/tex], where [tex]\( p \)[/tex] is a factor of the constant term ([tex]\( \pm 1, \pm 7 \)[/tex]) and [tex]\( q \)[/tex] is a factor of the leading coefficient ([tex]\( \pm 1, \pm 2, \pm 4, \pm 8 \)[/tex]).
Combining these, we get the possible rational roots:
[tex]\[ \pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}, \pm 7, \pm \frac{7}{2}, \pm \frac{7}{4}, \pm \frac{7}{8} \][/tex]
Thus, listing all the possible rational roots, we have:
[tex]\[ \{\pm 1, \pm 7, \pm \frac{1}{2}, \pm \frac{7}{2}, \pm \frac{1}{4}, \pm \frac{7}{4}, \pm \frac{1}{8}, \pm \frac{7}{8}\} \][/tex]
Given the multiple-choice options:
A. [tex]\(\pm 1, \pm 7\)[/tex]
B. [tex]\(\pm 1, \pm 2, \pm 4, \pm 8\)[/tex]
C. [tex]\(\pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{7}, \pm \frac{2}{7}, \pm \frac{4}{7}, \pm \frac{8}{7}\)[/tex]
D. [tex]\(\pm 1, \pm 7, \pm \frac{1}{2}, \pm \frac{7}{2}, \pm \frac{1}{4}, \pm \frac{7}{4}, \pm \frac{1}{8}, \pm \frac{7}{8}\)[/tex]
The correct answer is:
D. [tex]\(\pm 1, \pm 7, \pm \frac{1}{2}, \pm \frac{7}{2}, \pm \frac{1}{4}, \pm \frac{7}{4}, \pm \frac{1}{8}, \pm \frac{7}{8}\)[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.