Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To answer this question, we will use the Rational Zero Theorem. This theorem states that any rational solution of the polynomial equation [tex]\( P(x) = 0 \)[/tex] is a fraction [tex]\(\frac{p}{q}\)[/tex], where [tex]\( p \)[/tex] is a factor of the constant term and [tex]\( q \)[/tex] is a factor of the leading coefficient.
Given the polynomial equation:
[tex]\[ 8x^3 + 50x^2 - 41x + 7 = 0 \][/tex]
1. Identify the constant term and its factors:
The constant term is [tex]\( 7 \)[/tex]. The factors of [tex]\( 7 \)[/tex] are:
[tex]\[ \pm 1, \pm 7 \][/tex]
2. Identify the leading coefficient and its factors:
The leading coefficient is [tex]\( 8 \)[/tex]. The factors of [tex]\( 8 \)[/tex] are:
[tex]\[ \pm 1, \pm 2, \pm 4, \pm 8 \][/tex]
3. Formulate all possible rational roots:
According to the Rational Zero Theorem, the possible rational roots are given by all possible values of [tex]\( \frac{p}{q} \)[/tex], where [tex]\( p \)[/tex] is a factor of the constant term ([tex]\( \pm 1, \pm 7 \)[/tex]) and [tex]\( q \)[/tex] is a factor of the leading coefficient ([tex]\( \pm 1, \pm 2, \pm 4, \pm 8 \)[/tex]).
Combining these, we get the possible rational roots:
[tex]\[ \pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}, \pm 7, \pm \frac{7}{2}, \pm \frac{7}{4}, \pm \frac{7}{8} \][/tex]
Thus, listing all the possible rational roots, we have:
[tex]\[ \{\pm 1, \pm 7, \pm \frac{1}{2}, \pm \frac{7}{2}, \pm \frac{1}{4}, \pm \frac{7}{4}, \pm \frac{1}{8}, \pm \frac{7}{8}\} \][/tex]
Given the multiple-choice options:
A. [tex]\(\pm 1, \pm 7\)[/tex]
B. [tex]\(\pm 1, \pm 2, \pm 4, \pm 8\)[/tex]
C. [tex]\(\pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{7}, \pm \frac{2}{7}, \pm \frac{4}{7}, \pm \frac{8}{7}\)[/tex]
D. [tex]\(\pm 1, \pm 7, \pm \frac{1}{2}, \pm \frac{7}{2}, \pm \frac{1}{4}, \pm \frac{7}{4}, \pm \frac{1}{8}, \pm \frac{7}{8}\)[/tex]
The correct answer is:
D. [tex]\(\pm 1, \pm 7, \pm \frac{1}{2}, \pm \frac{7}{2}, \pm \frac{1}{4}, \pm \frac{7}{4}, \pm \frac{1}{8}, \pm \frac{7}{8}\)[/tex]
Given the polynomial equation:
[tex]\[ 8x^3 + 50x^2 - 41x + 7 = 0 \][/tex]
1. Identify the constant term and its factors:
The constant term is [tex]\( 7 \)[/tex]. The factors of [tex]\( 7 \)[/tex] are:
[tex]\[ \pm 1, \pm 7 \][/tex]
2. Identify the leading coefficient and its factors:
The leading coefficient is [tex]\( 8 \)[/tex]. The factors of [tex]\( 8 \)[/tex] are:
[tex]\[ \pm 1, \pm 2, \pm 4, \pm 8 \][/tex]
3. Formulate all possible rational roots:
According to the Rational Zero Theorem, the possible rational roots are given by all possible values of [tex]\( \frac{p}{q} \)[/tex], where [tex]\( p \)[/tex] is a factor of the constant term ([tex]\( \pm 1, \pm 7 \)[/tex]) and [tex]\( q \)[/tex] is a factor of the leading coefficient ([tex]\( \pm 1, \pm 2, \pm 4, \pm 8 \)[/tex]).
Combining these, we get the possible rational roots:
[tex]\[ \pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}, \pm 7, \pm \frac{7}{2}, \pm \frac{7}{4}, \pm \frac{7}{8} \][/tex]
Thus, listing all the possible rational roots, we have:
[tex]\[ \{\pm 1, \pm 7, \pm \frac{1}{2}, \pm \frac{7}{2}, \pm \frac{1}{4}, \pm \frac{7}{4}, \pm \frac{1}{8}, \pm \frac{7}{8}\} \][/tex]
Given the multiple-choice options:
A. [tex]\(\pm 1, \pm 7\)[/tex]
B. [tex]\(\pm 1, \pm 2, \pm 4, \pm 8\)[/tex]
C. [tex]\(\pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{7}, \pm \frac{2}{7}, \pm \frac{4}{7}, \pm \frac{8}{7}\)[/tex]
D. [tex]\(\pm 1, \pm 7, \pm \frac{1}{2}, \pm \frac{7}{2}, \pm \frac{1}{4}, \pm \frac{7}{4}, \pm \frac{1}{8}, \pm \frac{7}{8}\)[/tex]
The correct answer is:
D. [tex]\(\pm 1, \pm 7, \pm \frac{1}{2}, \pm \frac{7}{2}, \pm \frac{1}{4}, \pm \frac{7}{4}, \pm \frac{1}{8}, \pm \frac{7}{8}\)[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.