Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve the problem step-by-step.
### Part (A): Identifying Possible Rational Roots
Using the Rational Root Theorem, the possible rational roots of the polynomial [tex]\(8x^3 + 50x^2 - 41x + 7 = 0\)[/tex] are given by the factors of the constant term (7) divided by the factors of the leading coefficient (8).
1. Factors of the constant term (+7):
[tex]\[\pm 1, \pm 7\][/tex]
2. Factors of the leading coefficient (+8):
[tex]\[\pm 1, \pm 2, \pm 4, \pm 8\][/tex]
Therefore, the possible rational roots are all possible fractions formed by dividing factors of the constant term by factors of the leading coefficient. This results in:
[tex]\[ \pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}, \pm 7, \pm \frac{7}{2}, \pm \frac{7}{4}, \pm \frac{7}{8} \][/tex]
So, the answer to part (A) is:
[tex]\[ \boxed{\pm 1, \pm 7, \pm \frac{1}{2}, \pm \frac{7}{2}, \pm \frac{1}{4}, \pm \frac{7}{4}, \pm \frac{1}{8}, \pm \frac{7}{8}} \][/tex]
### Part (B): Using Synthetic Division
We are given that one rational root of the equation is -7.
Using synthetic division to verify that -7 is indeed a root:
[tex]\[ \begin{array}{r|rrrr} -7 & 8 & 50 & -41 & 7 \\ & & -56 & 42 & -7 \\ \hline & 8 & -6 & 1 & 0 \end{array} \][/tex]
1. Write coefficients: [tex]\(8, 50, -41, 7\)[/tex].
2. Bring down the leading coefficient: [tex]\(8\)[/tex].
3. Multiply -7 by 8, and add to 50: [tex]\(50 + (-56) = -6\)[/tex].
4. Multiply -7 by -6, and add to -41: [tex]\(-41 + 42 = 1\)[/tex].
5. Multiply -7 by 1, and add to 7: [tex]\(7 + (-7) = 0\)[/tex].
Since we get a remainder of 0, [tex]\( -7 \)[/tex] is confirmed as a root.
### Part (C): Solving the Quotient Polynomial
After synthetic division, we obtained the quotient polynomial:
[tex]\[ 8x^2 - 6x + 1 = 0 \][/tex]
To solve this quadratic equation, we use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 8 \)[/tex], [tex]\( b = -6 \)[/tex], and [tex]\( c = 1 \)[/tex]:
[tex]\[ x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 8 \cdot 1}}{2 \cdot 8} = \frac{6 \pm \sqrt{36 - 32}}{16} = \frac{6 \pm \sqrt{4}}{16} \][/tex]
[tex]\[ x = \frac{6 \pm 2}{16} \][/tex]
This gives us two solutions:
[tex]\[ x = \frac{6 + 2}{16} = \frac{8}{16} = \frac{1}{2} \][/tex]
[tex]\[ x = \frac{6 - 2}{16} = \frac{4}{16} = \frac{1}{4} \][/tex]
Combining this with the root [tex]\( -7 \)[/tex] we found earlier, the solution set is:
[tex]\[ \boxed{-7, \frac{1}{2}, \frac{1}{4}} \][/tex]
### Part (A): Identifying Possible Rational Roots
Using the Rational Root Theorem, the possible rational roots of the polynomial [tex]\(8x^3 + 50x^2 - 41x + 7 = 0\)[/tex] are given by the factors of the constant term (7) divided by the factors of the leading coefficient (8).
1. Factors of the constant term (+7):
[tex]\[\pm 1, \pm 7\][/tex]
2. Factors of the leading coefficient (+8):
[tex]\[\pm 1, \pm 2, \pm 4, \pm 8\][/tex]
Therefore, the possible rational roots are all possible fractions formed by dividing factors of the constant term by factors of the leading coefficient. This results in:
[tex]\[ \pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}, \pm 7, \pm \frac{7}{2}, \pm \frac{7}{4}, \pm \frac{7}{8} \][/tex]
So, the answer to part (A) is:
[tex]\[ \boxed{\pm 1, \pm 7, \pm \frac{1}{2}, \pm \frac{7}{2}, \pm \frac{1}{4}, \pm \frac{7}{4}, \pm \frac{1}{8}, \pm \frac{7}{8}} \][/tex]
### Part (B): Using Synthetic Division
We are given that one rational root of the equation is -7.
Using synthetic division to verify that -7 is indeed a root:
[tex]\[ \begin{array}{r|rrrr} -7 & 8 & 50 & -41 & 7 \\ & & -56 & 42 & -7 \\ \hline & 8 & -6 & 1 & 0 \end{array} \][/tex]
1. Write coefficients: [tex]\(8, 50, -41, 7\)[/tex].
2. Bring down the leading coefficient: [tex]\(8\)[/tex].
3. Multiply -7 by 8, and add to 50: [tex]\(50 + (-56) = -6\)[/tex].
4. Multiply -7 by -6, and add to -41: [tex]\(-41 + 42 = 1\)[/tex].
5. Multiply -7 by 1, and add to 7: [tex]\(7 + (-7) = 0\)[/tex].
Since we get a remainder of 0, [tex]\( -7 \)[/tex] is confirmed as a root.
### Part (C): Solving the Quotient Polynomial
After synthetic division, we obtained the quotient polynomial:
[tex]\[ 8x^2 - 6x + 1 = 0 \][/tex]
To solve this quadratic equation, we use the quadratic formula:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
Here, [tex]\( a = 8 \)[/tex], [tex]\( b = -6 \)[/tex], and [tex]\( c = 1 \)[/tex]:
[tex]\[ x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \cdot 8 \cdot 1}}{2 \cdot 8} = \frac{6 \pm \sqrt{36 - 32}}{16} = \frac{6 \pm \sqrt{4}}{16} \][/tex]
[tex]\[ x = \frac{6 \pm 2}{16} \][/tex]
This gives us two solutions:
[tex]\[ x = \frac{6 + 2}{16} = \frac{8}{16} = \frac{1}{2} \][/tex]
[tex]\[ x = \frac{6 - 2}{16} = \frac{4}{16} = \frac{1}{4} \][/tex]
Combining this with the root [tex]\( -7 \)[/tex] we found earlier, the solution set is:
[tex]\[ \boxed{-7, \frac{1}{2}, \frac{1}{4}} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.