At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's solve the problem step-by-step.
The equilibrium reaction is given by:
[tex]\[ \text{CO} (g) + 2 \text{H}_2 (g) \leftrightarrow \text{CH}_3\text{OH} (g) \][/tex]
The equilibrium constant ([tex]\( K_{eq} \)[/tex]) for this reaction is 26.
Given data:
- The equilibrium concentration of CO ([tex]\([ \text{CO} ]\)[/tex]) is [tex]\( 3.4 \times 10^{-1} M \)[/tex].
- The equilibrium concentration of [tex]\(\text{H}_2\)[/tex] ([tex]\([ \text{H}_2 ]\)[/tex]) is [tex]\( 6.8 \times 10^{-1} M \)[/tex].
We need to determine the equilibrium concentration of [tex]\(\text{CH}_3\text{OH}\)[/tex] ([tex]\([ \text{CH}_3\text{OH} ]\)[/tex]).
The expression for the equilibrium constant ([tex]\( K_{eq} \)[/tex]) for the given reaction is:
[tex]\[ K_{eq} = \frac{[ \text{CH}_3\text{OH} ]}{[ \text{CO} ] \times [ \text{H}_2 ]^2} \][/tex]
We are given [tex]\( K_{eq} = 26 \)[/tex], [tex]\([ \text{CO} ] = 0.34 M \)[/tex], and [tex]\([ \text{H}_2 ] = 0.68 M\)[/tex].
Let's substitute these values into the equilibrium expression to find [tex]\([ \text{CH}_3\text{OH} ]\)[/tex]:
[tex]\[ 26 = \frac{[ \text{CH}_3\text{OH} ]}{0.34 \times (0.68)^2} \][/tex]
First, calculate [tex]\( (0.68)^2 \)[/tex]:
[tex]\[ (0.68)^2 = 0.4624 \][/tex]
Now, substitute [tex]\( 0.4624 \)[/tex] back into the equation:
[tex]\[ 26 = \frac{[ \text{CH}_3\text{OH} ]}{0.34 \times 0.4624} \][/tex]
Next, calculate [tex]\( 0.34 \times 0.4624 \)[/tex]:
[tex]\[ 0.34 \times 0.4624 = 0.157216 \][/tex]
Now, the equation becomes:
[tex]\[ 26 = \frac{[ \text{CH}_3\text{OH} ]}{0.157216} \][/tex]
To find [tex]\([ \text{CH}_3\text{OH} ]\)[/tex], multiply both sides by [tex]\( 0.157216 \)[/tex]:
[tex]\[ [ \text{CH}_3\text{OH} ] = 26 \times 0.157216 \][/tex]
Finally, calculate the right-hand side:
[tex]\[ [ \text{CH}_3\text{OH} ] = 4.087616 \][/tex]
Therefore, the equilibrium concentration of [tex]\(\text{CH}_3\text{OH}\)[/tex] is [tex]\( 4.0876 \, M \)[/tex] (rounded to four decimal places).
The equilibrium reaction is given by:
[tex]\[ \text{CO} (g) + 2 \text{H}_2 (g) \leftrightarrow \text{CH}_3\text{OH} (g) \][/tex]
The equilibrium constant ([tex]\( K_{eq} \)[/tex]) for this reaction is 26.
Given data:
- The equilibrium concentration of CO ([tex]\([ \text{CO} ]\)[/tex]) is [tex]\( 3.4 \times 10^{-1} M \)[/tex].
- The equilibrium concentration of [tex]\(\text{H}_2\)[/tex] ([tex]\([ \text{H}_2 ]\)[/tex]) is [tex]\( 6.8 \times 10^{-1} M \)[/tex].
We need to determine the equilibrium concentration of [tex]\(\text{CH}_3\text{OH}\)[/tex] ([tex]\([ \text{CH}_3\text{OH} ]\)[/tex]).
The expression for the equilibrium constant ([tex]\( K_{eq} \)[/tex]) for the given reaction is:
[tex]\[ K_{eq} = \frac{[ \text{CH}_3\text{OH} ]}{[ \text{CO} ] \times [ \text{H}_2 ]^2} \][/tex]
We are given [tex]\( K_{eq} = 26 \)[/tex], [tex]\([ \text{CO} ] = 0.34 M \)[/tex], and [tex]\([ \text{H}_2 ] = 0.68 M\)[/tex].
Let's substitute these values into the equilibrium expression to find [tex]\([ \text{CH}_3\text{OH} ]\)[/tex]:
[tex]\[ 26 = \frac{[ \text{CH}_3\text{OH} ]}{0.34 \times (0.68)^2} \][/tex]
First, calculate [tex]\( (0.68)^2 \)[/tex]:
[tex]\[ (0.68)^2 = 0.4624 \][/tex]
Now, substitute [tex]\( 0.4624 \)[/tex] back into the equation:
[tex]\[ 26 = \frac{[ \text{CH}_3\text{OH} ]}{0.34 \times 0.4624} \][/tex]
Next, calculate [tex]\( 0.34 \times 0.4624 \)[/tex]:
[tex]\[ 0.34 \times 0.4624 = 0.157216 \][/tex]
Now, the equation becomes:
[tex]\[ 26 = \frac{[ \text{CH}_3\text{OH} ]}{0.157216} \][/tex]
To find [tex]\([ \text{CH}_3\text{OH} ]\)[/tex], multiply both sides by [tex]\( 0.157216 \)[/tex]:
[tex]\[ [ \text{CH}_3\text{OH} ] = 26 \times 0.157216 \][/tex]
Finally, calculate the right-hand side:
[tex]\[ [ \text{CH}_3\text{OH} ] = 4.087616 \][/tex]
Therefore, the equilibrium concentration of [tex]\(\text{CH}_3\text{OH}\)[/tex] is [tex]\( 4.0876 \, M \)[/tex] (rounded to four decimal places).
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.