Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! Let's solve the problem step-by-step.
The equilibrium reaction is given by:
[tex]\[ \text{CO} (g) + 2 \text{H}_2 (g) \leftrightarrow \text{CH}_3\text{OH} (g) \][/tex]
The equilibrium constant ([tex]\( K_{eq} \)[/tex]) for this reaction is 26.
Given data:
- The equilibrium concentration of CO ([tex]\([ \text{CO} ]\)[/tex]) is [tex]\( 3.4 \times 10^{-1} M \)[/tex].
- The equilibrium concentration of [tex]\(\text{H}_2\)[/tex] ([tex]\([ \text{H}_2 ]\)[/tex]) is [tex]\( 6.8 \times 10^{-1} M \)[/tex].
We need to determine the equilibrium concentration of [tex]\(\text{CH}_3\text{OH}\)[/tex] ([tex]\([ \text{CH}_3\text{OH} ]\)[/tex]).
The expression for the equilibrium constant ([tex]\( K_{eq} \)[/tex]) for the given reaction is:
[tex]\[ K_{eq} = \frac{[ \text{CH}_3\text{OH} ]}{[ \text{CO} ] \times [ \text{H}_2 ]^2} \][/tex]
We are given [tex]\( K_{eq} = 26 \)[/tex], [tex]\([ \text{CO} ] = 0.34 M \)[/tex], and [tex]\([ \text{H}_2 ] = 0.68 M\)[/tex].
Let's substitute these values into the equilibrium expression to find [tex]\([ \text{CH}_3\text{OH} ]\)[/tex]:
[tex]\[ 26 = \frac{[ \text{CH}_3\text{OH} ]}{0.34 \times (0.68)^2} \][/tex]
First, calculate [tex]\( (0.68)^2 \)[/tex]:
[tex]\[ (0.68)^2 = 0.4624 \][/tex]
Now, substitute [tex]\( 0.4624 \)[/tex] back into the equation:
[tex]\[ 26 = \frac{[ \text{CH}_3\text{OH} ]}{0.34 \times 0.4624} \][/tex]
Next, calculate [tex]\( 0.34 \times 0.4624 \)[/tex]:
[tex]\[ 0.34 \times 0.4624 = 0.157216 \][/tex]
Now, the equation becomes:
[tex]\[ 26 = \frac{[ \text{CH}_3\text{OH} ]}{0.157216} \][/tex]
To find [tex]\([ \text{CH}_3\text{OH} ]\)[/tex], multiply both sides by [tex]\( 0.157216 \)[/tex]:
[tex]\[ [ \text{CH}_3\text{OH} ] = 26 \times 0.157216 \][/tex]
Finally, calculate the right-hand side:
[tex]\[ [ \text{CH}_3\text{OH} ] = 4.087616 \][/tex]
Therefore, the equilibrium concentration of [tex]\(\text{CH}_3\text{OH}\)[/tex] is [tex]\( 4.0876 \, M \)[/tex] (rounded to four decimal places).
The equilibrium reaction is given by:
[tex]\[ \text{CO} (g) + 2 \text{H}_2 (g) \leftrightarrow \text{CH}_3\text{OH} (g) \][/tex]
The equilibrium constant ([tex]\( K_{eq} \)[/tex]) for this reaction is 26.
Given data:
- The equilibrium concentration of CO ([tex]\([ \text{CO} ]\)[/tex]) is [tex]\( 3.4 \times 10^{-1} M \)[/tex].
- The equilibrium concentration of [tex]\(\text{H}_2\)[/tex] ([tex]\([ \text{H}_2 ]\)[/tex]) is [tex]\( 6.8 \times 10^{-1} M \)[/tex].
We need to determine the equilibrium concentration of [tex]\(\text{CH}_3\text{OH}\)[/tex] ([tex]\([ \text{CH}_3\text{OH} ]\)[/tex]).
The expression for the equilibrium constant ([tex]\( K_{eq} \)[/tex]) for the given reaction is:
[tex]\[ K_{eq} = \frac{[ \text{CH}_3\text{OH} ]}{[ \text{CO} ] \times [ \text{H}_2 ]^2} \][/tex]
We are given [tex]\( K_{eq} = 26 \)[/tex], [tex]\([ \text{CO} ] = 0.34 M \)[/tex], and [tex]\([ \text{H}_2 ] = 0.68 M\)[/tex].
Let's substitute these values into the equilibrium expression to find [tex]\([ \text{CH}_3\text{OH} ]\)[/tex]:
[tex]\[ 26 = \frac{[ \text{CH}_3\text{OH} ]}{0.34 \times (0.68)^2} \][/tex]
First, calculate [tex]\( (0.68)^2 \)[/tex]:
[tex]\[ (0.68)^2 = 0.4624 \][/tex]
Now, substitute [tex]\( 0.4624 \)[/tex] back into the equation:
[tex]\[ 26 = \frac{[ \text{CH}_3\text{OH} ]}{0.34 \times 0.4624} \][/tex]
Next, calculate [tex]\( 0.34 \times 0.4624 \)[/tex]:
[tex]\[ 0.34 \times 0.4624 = 0.157216 \][/tex]
Now, the equation becomes:
[tex]\[ 26 = \frac{[ \text{CH}_3\text{OH} ]}{0.157216} \][/tex]
To find [tex]\([ \text{CH}_3\text{OH} ]\)[/tex], multiply both sides by [tex]\( 0.157216 \)[/tex]:
[tex]\[ [ \text{CH}_3\text{OH} ] = 26 \times 0.157216 \][/tex]
Finally, calculate the right-hand side:
[tex]\[ [ \text{CH}_3\text{OH} ] = 4.087616 \][/tex]
Therefore, the equilibrium concentration of [tex]\(\text{CH}_3\text{OH}\)[/tex] is [tex]\( 4.0876 \, M \)[/tex] (rounded to four decimal places).
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.