Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's solve this problem step-by-step:
### Step 1: Identify the roots of the given quadratic equation
The roots of the given quadratic equation [tex]\(3x^2 + 5x - 1 = 0\)[/tex] are:
[tex]\[ \alpha = -\frac{5}{6} + \frac{\sqrt{37}}{6}, \quad \beta = -\frac{\sqrt{37}}{6} - \frac{5}{6} \][/tex]
### Step 2: Construct equations for the given conditions
#### (a) Equation with roots [tex]\(5\alpha\)[/tex] and [tex]\(5\beta\)[/tex]
To construct the equation with roots [tex]\(5\alpha\)[/tex] and [tex]\(5\beta\)[/tex], we start by substituting [tex]\(x = 5t\)[/tex] into the original equation to form:
[tex]\[ 3\left(\frac{x}{5}\right)^2 + 5\left(\frac{x}{5}\right) - 1 = 0 \][/tex]
Simplifying, we get:
[tex]\[ \frac{3}{25}x^2 + \frac{5}{5}x - 1 = 0 \][/tex]
[tex]\[ \frac{3}{25}x^2 + x - 1 = 0 \][/tex]
Multiplying through by 25 to clear the fraction gives the final equation:
[tex]\[ 3x^2 + 25x - 25 = 0 \][/tex]
#### (b) Equation with roots [tex]\(\alpha^2\)[/tex] and [tex]\(\beta^2\)[/tex]
To construct the equation with roots [tex]\(\alpha^2\)[/tex] and [tex]\(\beta^2\)[/tex]:
[tex]\[ 3(t^{1/2})^2 + 5t^{1/2} - 1 = 0 \][/tex]
Where [tex]\(t = x^2\)[/tex], this simplifies to:
[tex]\[ 3x + 5\sqrt{x} - 1 = 0 \][/tex]
#### (c) Equation with roots [tex]\(\frac{1}{\alpha}\)[/tex] and [tex]\(\frac{1}{\beta}\)[/tex]
To construct the equation with the roots [tex]\(\frac{1}{\alpha}\)[/tex] and [tex]\(\frac{1}{\beta}\)[/tex]:
Change the original equation by substituting [tex]\(x = \frac{1}{t}\)[/tex]:
[tex]\[ 3\left(\frac{1}{x}\right)^2 + 5\left(\frac{1}{x}\right) - 1 = 0 \][/tex]
Multiply through by [tex]\(x^2\)[/tex] to clear the fractions:
[tex]\[ 3 + 5x - x^2 = 0 \][/tex]
Convert to:
[tex]\[ x^2 - 5x - 3 = 0 \][/tex]
#### (d) Equation with roots [tex]\(\alpha + \frac{1}{\beta}\)[/tex] and [tex]\(\beta + \frac{1}{\alpha}\)[/tex]
Roots are [tex]\(\alpha + \frac{1}{\beta}\)[/tex] and [tex]\(\beta + \frac{1}{\alpha}\)[/tex]. These roots are obtained by:
[tex]\[ \left(x - \left(\alpha + \frac{1}{\beta}\right)\right)\left(x - \left(\beta + \frac{1}{\alpha}\right)\right) = 0 \][/tex]
Using the specific values of [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]:
[tex]\[ \left(x - \left(-\frac{5}{6} + \frac{\sqrt{37}}{6} + \frac{6}{1 -\frac{5}{6}} \right)\right) \left(x - \left(-\frac{\sqrt{37}}{6} - \frac{5}{6} \right.+ \frac{6}{1 + \frac{\sqrt{37}}{6} - \frac{5}{6}} \right)\right) = 0 \][/tex]
This simplifies to:
[tex]\[ 3x^2 - 10x + 4 = 0 \][/tex]
#### (e) Equation with roots [tex]\(\frac{\alpha+1}{β+1}\)[/tex] and [tex]\(\frac{\beta+1}{\alpha+1}\)[/tex]
To construct the equation with roots [tex]\(\frac{\alpha+1}{\beta+1}\)[/tex] and [tex]\(\frac{\beta+1}{\alpha+1}\)[/tex]:
[tex]\[ (x - \frac{-5/6 \ + \ \sqrt{37}/6 \ +1 \}{- \ (sqrt(37)\-6)})(X-(5)< \frac(sqrt(37)/6\right) ) = 0 \][/tex]
This simplifies to:
[tex]\[ 9x^2 + 19x + 9 = 0 \][/tex]
### Final compiled results
The equations based on the transformed roots are:
(a) [tex]\(3x^2 + 25x - 25 = 0\)[/tex]
(b) [tex]\(3x + 5\sqrt{x} - 1 = 0\)[/tex]
(c) [tex]\(x^2 - 5x - 3 = 0\)[/tex]
(d) [tex]\(3x^2 - 10x + 4 = 0\)[/tex]
(e) [tex]\(9x^2 + 19x + 9 = 0\)[/tex]
### Step 1: Identify the roots of the given quadratic equation
The roots of the given quadratic equation [tex]\(3x^2 + 5x - 1 = 0\)[/tex] are:
[tex]\[ \alpha = -\frac{5}{6} + \frac{\sqrt{37}}{6}, \quad \beta = -\frac{\sqrt{37}}{6} - \frac{5}{6} \][/tex]
### Step 2: Construct equations for the given conditions
#### (a) Equation with roots [tex]\(5\alpha\)[/tex] and [tex]\(5\beta\)[/tex]
To construct the equation with roots [tex]\(5\alpha\)[/tex] and [tex]\(5\beta\)[/tex], we start by substituting [tex]\(x = 5t\)[/tex] into the original equation to form:
[tex]\[ 3\left(\frac{x}{5}\right)^2 + 5\left(\frac{x}{5}\right) - 1 = 0 \][/tex]
Simplifying, we get:
[tex]\[ \frac{3}{25}x^2 + \frac{5}{5}x - 1 = 0 \][/tex]
[tex]\[ \frac{3}{25}x^2 + x - 1 = 0 \][/tex]
Multiplying through by 25 to clear the fraction gives the final equation:
[tex]\[ 3x^2 + 25x - 25 = 0 \][/tex]
#### (b) Equation with roots [tex]\(\alpha^2\)[/tex] and [tex]\(\beta^2\)[/tex]
To construct the equation with roots [tex]\(\alpha^2\)[/tex] and [tex]\(\beta^2\)[/tex]:
[tex]\[ 3(t^{1/2})^2 + 5t^{1/2} - 1 = 0 \][/tex]
Where [tex]\(t = x^2\)[/tex], this simplifies to:
[tex]\[ 3x + 5\sqrt{x} - 1 = 0 \][/tex]
#### (c) Equation with roots [tex]\(\frac{1}{\alpha}\)[/tex] and [tex]\(\frac{1}{\beta}\)[/tex]
To construct the equation with the roots [tex]\(\frac{1}{\alpha}\)[/tex] and [tex]\(\frac{1}{\beta}\)[/tex]:
Change the original equation by substituting [tex]\(x = \frac{1}{t}\)[/tex]:
[tex]\[ 3\left(\frac{1}{x}\right)^2 + 5\left(\frac{1}{x}\right) - 1 = 0 \][/tex]
Multiply through by [tex]\(x^2\)[/tex] to clear the fractions:
[tex]\[ 3 + 5x - x^2 = 0 \][/tex]
Convert to:
[tex]\[ x^2 - 5x - 3 = 0 \][/tex]
#### (d) Equation with roots [tex]\(\alpha + \frac{1}{\beta}\)[/tex] and [tex]\(\beta + \frac{1}{\alpha}\)[/tex]
Roots are [tex]\(\alpha + \frac{1}{\beta}\)[/tex] and [tex]\(\beta + \frac{1}{\alpha}\)[/tex]. These roots are obtained by:
[tex]\[ \left(x - \left(\alpha + \frac{1}{\beta}\right)\right)\left(x - \left(\beta + \frac{1}{\alpha}\right)\right) = 0 \][/tex]
Using the specific values of [tex]\(\alpha\)[/tex] and [tex]\(\beta\)[/tex]:
[tex]\[ \left(x - \left(-\frac{5}{6} + \frac{\sqrt{37}}{6} + \frac{6}{1 -\frac{5}{6}} \right)\right) \left(x - \left(-\frac{\sqrt{37}}{6} - \frac{5}{6} \right.+ \frac{6}{1 + \frac{\sqrt{37}}{6} - \frac{5}{6}} \right)\right) = 0 \][/tex]
This simplifies to:
[tex]\[ 3x^2 - 10x + 4 = 0 \][/tex]
#### (e) Equation with roots [tex]\(\frac{\alpha+1}{β+1}\)[/tex] and [tex]\(\frac{\beta+1}{\alpha+1}\)[/tex]
To construct the equation with roots [tex]\(\frac{\alpha+1}{\beta+1}\)[/tex] and [tex]\(\frac{\beta+1}{\alpha+1}\)[/tex]:
[tex]\[ (x - \frac{-5/6 \ + \ \sqrt{37}/6 \ +1 \}{- \ (sqrt(37)\-6)})(X-(5)< \frac(sqrt(37)/6\right) ) = 0 \][/tex]
This simplifies to:
[tex]\[ 9x^2 + 19x + 9 = 0 \][/tex]
### Final compiled results
The equations based on the transformed roots are:
(a) [tex]\(3x^2 + 25x - 25 = 0\)[/tex]
(b) [tex]\(3x + 5\sqrt{x} - 1 = 0\)[/tex]
(c) [tex]\(x^2 - 5x - 3 = 0\)[/tex]
(d) [tex]\(3x^2 - 10x + 4 = 0\)[/tex]
(e) [tex]\(9x^2 + 19x + 9 = 0\)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.