Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the mean for the data items in the given frequency distribution, follow these steps:
1. Identify the Scores and Frequencies:
- Scores ([tex]$x$[/tex]): [tex]\(1, 2, 3, 4, 5, 6, 7, 8, 9, 10\)[/tex]
- Frequencies ([tex]$f$[/tex]): [tex]\(2, 2, 1, 5, 4, 8, 6, 5, 4, 3\)[/tex]
2. Calculate the Total Number of Data Items:
- The total number of data items is the sum of the frequencies.
[tex]\[ \text{Total number of data items} = 2 + 2 + 1 + 5 + 4 + 8 + 6 + 5 + 4 + 3 = 40 \][/tex]
3. Calculate the Weighted Sum of Scores:
- Multiply each score by its corresponding frequency and sum all the products.
[tex]\[ \begin{align*} \text{Weighted Sum} & = (1 \cdot 2) + (2 \cdot 2) + (3 \cdot 1) + (4 \cdot 5) + (5 \cdot 4) \\ &\quad + (6 \cdot 8) + (7 \cdot 6) + (8 \cdot 5) + (9 \cdot 4) + (10 \cdot 3) \\ & = 2 + 4 + 3 + 20 + 20 + 48 + 42 + 40 + 36 + 30 \\ & = 245 \end{align*} \][/tex]
4. Calculate the Mean:
- The mean is the weighted sum of scores divided by the total number of data items.
[tex]\[ \text{Mean} = \frac{\text{Weighted Sum}}{\text{Total number of data items}} = \frac{245}{40} = 6.125 \][/tex]
5. Round the Mean to 3 Decimal Places:
- In this case, the mean is already accurate to three decimal places, so it remains 6.125.
Thus, the mean for the data items in the given frequency distribution is [tex]\( \boxed{6.125} \)[/tex].
1. Identify the Scores and Frequencies:
- Scores ([tex]$x$[/tex]): [tex]\(1, 2, 3, 4, 5, 6, 7, 8, 9, 10\)[/tex]
- Frequencies ([tex]$f$[/tex]): [tex]\(2, 2, 1, 5, 4, 8, 6, 5, 4, 3\)[/tex]
2. Calculate the Total Number of Data Items:
- The total number of data items is the sum of the frequencies.
[tex]\[ \text{Total number of data items} = 2 + 2 + 1 + 5 + 4 + 8 + 6 + 5 + 4 + 3 = 40 \][/tex]
3. Calculate the Weighted Sum of Scores:
- Multiply each score by its corresponding frequency and sum all the products.
[tex]\[ \begin{align*} \text{Weighted Sum} & = (1 \cdot 2) + (2 \cdot 2) + (3 \cdot 1) + (4 \cdot 5) + (5 \cdot 4) \\ &\quad + (6 \cdot 8) + (7 \cdot 6) + (8 \cdot 5) + (9 \cdot 4) + (10 \cdot 3) \\ & = 2 + 4 + 3 + 20 + 20 + 48 + 42 + 40 + 36 + 30 \\ & = 245 \end{align*} \][/tex]
4. Calculate the Mean:
- The mean is the weighted sum of scores divided by the total number of data items.
[tex]\[ \text{Mean} = \frac{\text{Weighted Sum}}{\text{Total number of data items}} = \frac{245}{40} = 6.125 \][/tex]
5. Round the Mean to 3 Decimal Places:
- In this case, the mean is already accurate to three decimal places, so it remains 6.125.
Thus, the mean for the data items in the given frequency distribution is [tex]\( \boxed{6.125} \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.