Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

6. The value of [tex]$\sqrt{-9} \times \sqrt{-16}$[/tex] is equal to

A. 12
B. -12
C. [tex]$-12i$[/tex]
D. [tex]$12i$[/tex]


Sagot :

To solve for the value of [tex]\(\sqrt{-9} \times \sqrt{-16}\)[/tex], we need to work with the properties of complex numbers and imaginary units.

1. First, recognize that the square root of a negative number involves the imaginary unit [tex]\(i\)[/tex], where [tex]\(i = \sqrt{-1}\)[/tex].

2. Calculate [tex]\(\sqrt{-9}\)[/tex]:
[tex]\[ \sqrt{-9} = \sqrt{9 \times -1} = \sqrt{9} \times \sqrt{-1} = 3i \][/tex]

3. Similarly, calculate [tex]\(\sqrt{-16}\)[/tex]:
[tex]\[ \sqrt{-16} = \sqrt{16 \times -1} = \sqrt{16} \times \sqrt{-1} = 4i \][/tex]

4. Now, multiply the two results:
[tex]\[ \sqrt{-9} \times \sqrt{-16} = (3i) \times (4i) \][/tex]

5. Use the property of multiplication for imaginary numbers [tex]\(i \times i = i^2\)[/tex]:
[tex]\[ (3i) \times (4i) = 3 \times 4 \times i^2 = 12 \times i^2 \][/tex]

6. Recall that [tex]\(i^2 = -1\)[/tex]:
[tex]\[ 12 \times i^2 = 12 \times (-1) = -12 \][/tex]

Therefore, the value of [tex]\(\sqrt{-9} \times \sqrt{-16}\)[/tex] is [tex]\(-12\)[/tex].

Thus, the correct answer is:
B. -12