At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

The mean is given by [tex]$m = 6$[/tex]. Which equation shows the variance for the number of miles Fiona biked last week?

A. [tex]s^2=\frac{(4-6)^2+(7-6)^2+(4-6)^2+(10-6)^2+(5-6)^2}{6}[/tex]
B. [tex]\sigma=\sqrt{\frac{(4-6)^2+(7-6)^2+(4-6)^2+(10-6)^2+(5-6)^2}{5}}[/tex]
C. [tex]s=\sqrt{\frac{(4-6)^2+(7-6)^2+(4-6)^2+(10-6)^2+(5-6)^2}{4}}[/tex]
D. [tex]\sigma^2=\frac{(4-6)^2+(7-6)^2+(4-6)^2+(10-6)^2+(5-6)^2}{5}[/tex]


Sagot :

To find the correct equation that shows the variance for the number of miles Fiona biked last week, we need to understand the formula for variance.

The variance of a dataset is calculated as:
[tex]\[ \sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2 \][/tex]

Where:
- [tex]\( \sigma^2 \)[/tex] is the variance.
- [tex]\( N \)[/tex] is the number of data points.
- [tex]\( x_i \)[/tex] represents each data point.
- [tex]\( \mu \)[/tex] is the mean of the data points.

Given the data points: [tex]\( 4, 7, 4, 10, 5 \)[/tex] and the mean [tex]\( \mu = 6 \)[/tex], we will plug in these values into the variance formula.

1. Calculate each deviation from the mean and square it:
[tex]\[ (4 - 6)^2 = (-2)^2 = 4 \][/tex]
[tex]\[ (7 - 6)^2 = (1)^2 = 1 \][/tex]
[tex]\[ (4 - 6)^2 = (-2)^2 = 4 \][/tex]
[tex]\[ (10 - 6)^2 = (4)^2 = 16 \][/tex]
[tex]\[ (5 - 6)^2 = (-1)^2 = 1 \][/tex]

2. Sum these squared deviations:
[tex]\[ 4 + 1 + 4 + 16 + 1 = 26 \][/tex]

3. Since we are calculating the population variance (using [tex]\( N = 5 \)[/tex]):
[tex]\[ \sigma^2 = \frac{26}{5} = 5.2 \][/tex]

Thus, the equation that represents the variance correctly is:
[tex]\[ \sigma^2 = \frac{(4-6)^2+(7-6)^2+(4-6)^2+(10-6)^2+(5-6)^2}{5} \][/tex]

Therefore, the correct equation is:
[tex]\[ \sigma^2 = \frac{(4-6)^2+(7-6)^2+(4-6)^2+(10-6)^2+(5-6)^2}{5} \][/tex]