Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the radius of the circle given by the equation [tex]\( z^2 + y^2 + 6x - 8y - 10 = 0 \)[/tex], we need to rewrite it in the standard form of a circle's equation, [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] is the center and [tex]\(r\)[/tex] is the radius.
Let's complete the square for the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms:
1. Rearrange the equation for completing the square:
[tex]\[ x^2 + y^2 + 6x - 8y - 10 = 0 \][/tex]
2. Complete the square for the [tex]\(x\)[/tex]-terms:
- The relevant terms are [tex]\(x^2\)[/tex] and [tex]\(6x\)[/tex].
- Take half the coefficient of [tex]\(x\)[/tex] (which is 6), square it, and add/subtract that inside the equation:
[tex]\[ x^2 + 6x \quad \Rightarrow \quad (x + 3)^2 - 9 \][/tex]
- Here, [tex]\((x + 3)^2 - 9\)[/tex] is the completed square form.
3. Complete the square for the [tex]\(y\)[/tex]-terms:
- The relevant terms are [tex]\(y^2\)[/tex] and [tex]\(-8y\)[/tex].
- Take half the coefficient of [tex]\(y\)[/tex] (which is -8), square it, and add/subtract that inside the equation:
[tex]\[ y^2 - 8y \quad \Rightarrow \quad (y - 4)^2 - 16 \][/tex]
- Here, [tex]\((y - 4)^2 - 16\)[/tex] is the completed square form.
4. Substitute these back into the original equation:
[tex]\[ (x + 3)^2 - 9 + (y - 4)^2 - 16 - 10 = 0 \][/tex]
5. Simplify the equation:
[tex]\[ (x + 3)^2 + (y - 4)^2 - 35 = 0 \][/tex]
[tex]\[ (x + 3)^2 + (y - 4)^2 = 35 \][/tex]
From this equation, [tex]\((x + 3)^2 + (y - 4)^2 = 35\)[/tex], we can see that the circle has its center at [tex]\((-3, 4)\)[/tex] and its radius squared is equal to 35.
Therefore, the radius [tex]\(r\)[/tex] is:
[tex]\[ r = \sqrt{35} \][/tex]
The correct answer is [tex]\(\sqrt{35}\)[/tex] units.
Let's complete the square for the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms:
1. Rearrange the equation for completing the square:
[tex]\[ x^2 + y^2 + 6x - 8y - 10 = 0 \][/tex]
2. Complete the square for the [tex]\(x\)[/tex]-terms:
- The relevant terms are [tex]\(x^2\)[/tex] and [tex]\(6x\)[/tex].
- Take half the coefficient of [tex]\(x\)[/tex] (which is 6), square it, and add/subtract that inside the equation:
[tex]\[ x^2 + 6x \quad \Rightarrow \quad (x + 3)^2 - 9 \][/tex]
- Here, [tex]\((x + 3)^2 - 9\)[/tex] is the completed square form.
3. Complete the square for the [tex]\(y\)[/tex]-terms:
- The relevant terms are [tex]\(y^2\)[/tex] and [tex]\(-8y\)[/tex].
- Take half the coefficient of [tex]\(y\)[/tex] (which is -8), square it, and add/subtract that inside the equation:
[tex]\[ y^2 - 8y \quad \Rightarrow \quad (y - 4)^2 - 16 \][/tex]
- Here, [tex]\((y - 4)^2 - 16\)[/tex] is the completed square form.
4. Substitute these back into the original equation:
[tex]\[ (x + 3)^2 - 9 + (y - 4)^2 - 16 - 10 = 0 \][/tex]
5. Simplify the equation:
[tex]\[ (x + 3)^2 + (y - 4)^2 - 35 = 0 \][/tex]
[tex]\[ (x + 3)^2 + (y - 4)^2 = 35 \][/tex]
From this equation, [tex]\((x + 3)^2 + (y - 4)^2 = 35\)[/tex], we can see that the circle has its center at [tex]\((-3, 4)\)[/tex] and its radius squared is equal to 35.
Therefore, the radius [tex]\(r\)[/tex] is:
[tex]\[ r = \sqrt{35} \][/tex]
The correct answer is [tex]\(\sqrt{35}\)[/tex] units.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.