At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the radius of the circle given by the equation [tex]\( z^2 + y^2 + 6x - 8y - 10 = 0 \)[/tex], we need to rewrite it in the standard form of a circle's equation, [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] is the center and [tex]\(r\)[/tex] is the radius.
Let's complete the square for the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms:
1. Rearrange the equation for completing the square:
[tex]\[ x^2 + y^2 + 6x - 8y - 10 = 0 \][/tex]
2. Complete the square for the [tex]\(x\)[/tex]-terms:
- The relevant terms are [tex]\(x^2\)[/tex] and [tex]\(6x\)[/tex].
- Take half the coefficient of [tex]\(x\)[/tex] (which is 6), square it, and add/subtract that inside the equation:
[tex]\[ x^2 + 6x \quad \Rightarrow \quad (x + 3)^2 - 9 \][/tex]
- Here, [tex]\((x + 3)^2 - 9\)[/tex] is the completed square form.
3. Complete the square for the [tex]\(y\)[/tex]-terms:
- The relevant terms are [tex]\(y^2\)[/tex] and [tex]\(-8y\)[/tex].
- Take half the coefficient of [tex]\(y\)[/tex] (which is -8), square it, and add/subtract that inside the equation:
[tex]\[ y^2 - 8y \quad \Rightarrow \quad (y - 4)^2 - 16 \][/tex]
- Here, [tex]\((y - 4)^2 - 16\)[/tex] is the completed square form.
4. Substitute these back into the original equation:
[tex]\[ (x + 3)^2 - 9 + (y - 4)^2 - 16 - 10 = 0 \][/tex]
5. Simplify the equation:
[tex]\[ (x + 3)^2 + (y - 4)^2 - 35 = 0 \][/tex]
[tex]\[ (x + 3)^2 + (y - 4)^2 = 35 \][/tex]
From this equation, [tex]\((x + 3)^2 + (y - 4)^2 = 35\)[/tex], we can see that the circle has its center at [tex]\((-3, 4)\)[/tex] and its radius squared is equal to 35.
Therefore, the radius [tex]\(r\)[/tex] is:
[tex]\[ r = \sqrt{35} \][/tex]
The correct answer is [tex]\(\sqrt{35}\)[/tex] units.
Let's complete the square for the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms:
1. Rearrange the equation for completing the square:
[tex]\[ x^2 + y^2 + 6x - 8y - 10 = 0 \][/tex]
2. Complete the square for the [tex]\(x\)[/tex]-terms:
- The relevant terms are [tex]\(x^2\)[/tex] and [tex]\(6x\)[/tex].
- Take half the coefficient of [tex]\(x\)[/tex] (which is 6), square it, and add/subtract that inside the equation:
[tex]\[ x^2 + 6x \quad \Rightarrow \quad (x + 3)^2 - 9 \][/tex]
- Here, [tex]\((x + 3)^2 - 9\)[/tex] is the completed square form.
3. Complete the square for the [tex]\(y\)[/tex]-terms:
- The relevant terms are [tex]\(y^2\)[/tex] and [tex]\(-8y\)[/tex].
- Take half the coefficient of [tex]\(y\)[/tex] (which is -8), square it, and add/subtract that inside the equation:
[tex]\[ y^2 - 8y \quad \Rightarrow \quad (y - 4)^2 - 16 \][/tex]
- Here, [tex]\((y - 4)^2 - 16\)[/tex] is the completed square form.
4. Substitute these back into the original equation:
[tex]\[ (x + 3)^2 - 9 + (y - 4)^2 - 16 - 10 = 0 \][/tex]
5. Simplify the equation:
[tex]\[ (x + 3)^2 + (y - 4)^2 - 35 = 0 \][/tex]
[tex]\[ (x + 3)^2 + (y - 4)^2 = 35 \][/tex]
From this equation, [tex]\((x + 3)^2 + (y - 4)^2 = 35\)[/tex], we can see that the circle has its center at [tex]\((-3, 4)\)[/tex] and its radius squared is equal to 35.
Therefore, the radius [tex]\(r\)[/tex] is:
[tex]\[ r = \sqrt{35} \][/tex]
The correct answer is [tex]\(\sqrt{35}\)[/tex] units.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.