Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which number could replace [tex]\( N \)[/tex] so that the table represents a function, we need to ensure that the table adheres to the definition of a function. Specifically, each input (or [tex]\( x \)[/tex]-value) must map to exactly one output (or [tex]\( y \)[/tex]-value). This means that no two rows in the table should have the same [tex]\( x \)[/tex]-value.
We can start by identifying the [tex]\( x \)[/tex]-values already present in the table.
The [tex]\( x \)[/tex]-values given are:
- [tex]\( x = 12 \)[/tex]
- [tex]\( x = 9 \)[/tex]
- [tex]\( x = 4 \)[/tex]
- [tex]\( x = 11 \)[/tex]
Now, we have to choose a value for [tex]\( N \)[/tex] such that it does not repeat any of these [tex]\( x \)[/tex]-values. The possible values provided for [tex]\( N \)[/tex] are:
- [tex]\( N = 11 \)[/tex]
- [tex]\( N = 12 \)[/tex]
- [tex]\( N = 4 \)[/tex]
Let's analyze each possibility:
1. If [tex]\( N = 11 \)[/tex]:
The [tex]\( x \)[/tex]-values would be [tex]\( \{12, 9, 4, 11, 11\} \)[/tex]. This set has a repeat of the number 11, thus violating the definition of a function.
2. If [tex]\( N = 12 \)[/tex]:
The [tex]\( x \)[/tex]-values would be [tex]\( \{12, 9, 4, 11, 12\} \)[/tex]. This set has a repeat of the number 12, thus violating the definition of a function.
3. If [tex]\( N = 4 \)[/tex]:
The [tex]\( x \)[/tex]-values would be [tex]\( \{12, 9, 4, 11, 4\} \)[/tex]. This set has a repeat of the number 4, thus violating the definition of a function.
Since all provided options for [tex]\( N \)[/tex] repeat an existing [tex]\( x \)[/tex]-value in the table, there is no possible number from the given choices (11, 12, or 4) that can be used to replace [tex]\( N \)[/tex] without violating the one-to-one mapping required for a set of ordered pairs to represent a function.
Hence, no number from the given options can replace [tex]\( N \)[/tex] to make the table represent a function.
We can start by identifying the [tex]\( x \)[/tex]-values already present in the table.
The [tex]\( x \)[/tex]-values given are:
- [tex]\( x = 12 \)[/tex]
- [tex]\( x = 9 \)[/tex]
- [tex]\( x = 4 \)[/tex]
- [tex]\( x = 11 \)[/tex]
Now, we have to choose a value for [tex]\( N \)[/tex] such that it does not repeat any of these [tex]\( x \)[/tex]-values. The possible values provided for [tex]\( N \)[/tex] are:
- [tex]\( N = 11 \)[/tex]
- [tex]\( N = 12 \)[/tex]
- [tex]\( N = 4 \)[/tex]
Let's analyze each possibility:
1. If [tex]\( N = 11 \)[/tex]:
The [tex]\( x \)[/tex]-values would be [tex]\( \{12, 9, 4, 11, 11\} \)[/tex]. This set has a repeat of the number 11, thus violating the definition of a function.
2. If [tex]\( N = 12 \)[/tex]:
The [tex]\( x \)[/tex]-values would be [tex]\( \{12, 9, 4, 11, 12\} \)[/tex]. This set has a repeat of the number 12, thus violating the definition of a function.
3. If [tex]\( N = 4 \)[/tex]:
The [tex]\( x \)[/tex]-values would be [tex]\( \{12, 9, 4, 11, 4\} \)[/tex]. This set has a repeat of the number 4, thus violating the definition of a function.
Since all provided options for [tex]\( N \)[/tex] repeat an existing [tex]\( x \)[/tex]-value in the table, there is no possible number from the given choices (11, 12, or 4) that can be used to replace [tex]\( N \)[/tex] without violating the one-to-one mapping required for a set of ordered pairs to represent a function.
Hence, no number from the given options can replace [tex]\( N \)[/tex] to make the table represent a function.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.