Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which number could replace [tex]\( N \)[/tex] so that the table represents a function, we need to ensure that the table adheres to the definition of a function. Specifically, each input (or [tex]\( x \)[/tex]-value) must map to exactly one output (or [tex]\( y \)[/tex]-value). This means that no two rows in the table should have the same [tex]\( x \)[/tex]-value.
We can start by identifying the [tex]\( x \)[/tex]-values already present in the table.
The [tex]\( x \)[/tex]-values given are:
- [tex]\( x = 12 \)[/tex]
- [tex]\( x = 9 \)[/tex]
- [tex]\( x = 4 \)[/tex]
- [tex]\( x = 11 \)[/tex]
Now, we have to choose a value for [tex]\( N \)[/tex] such that it does not repeat any of these [tex]\( x \)[/tex]-values. The possible values provided for [tex]\( N \)[/tex] are:
- [tex]\( N = 11 \)[/tex]
- [tex]\( N = 12 \)[/tex]
- [tex]\( N = 4 \)[/tex]
Let's analyze each possibility:
1. If [tex]\( N = 11 \)[/tex]:
The [tex]\( x \)[/tex]-values would be [tex]\( \{12, 9, 4, 11, 11\} \)[/tex]. This set has a repeat of the number 11, thus violating the definition of a function.
2. If [tex]\( N = 12 \)[/tex]:
The [tex]\( x \)[/tex]-values would be [tex]\( \{12, 9, 4, 11, 12\} \)[/tex]. This set has a repeat of the number 12, thus violating the definition of a function.
3. If [tex]\( N = 4 \)[/tex]:
The [tex]\( x \)[/tex]-values would be [tex]\( \{12, 9, 4, 11, 4\} \)[/tex]. This set has a repeat of the number 4, thus violating the definition of a function.
Since all provided options for [tex]\( N \)[/tex] repeat an existing [tex]\( x \)[/tex]-value in the table, there is no possible number from the given choices (11, 12, or 4) that can be used to replace [tex]\( N \)[/tex] without violating the one-to-one mapping required for a set of ordered pairs to represent a function.
Hence, no number from the given options can replace [tex]\( N \)[/tex] to make the table represent a function.
We can start by identifying the [tex]\( x \)[/tex]-values already present in the table.
The [tex]\( x \)[/tex]-values given are:
- [tex]\( x = 12 \)[/tex]
- [tex]\( x = 9 \)[/tex]
- [tex]\( x = 4 \)[/tex]
- [tex]\( x = 11 \)[/tex]
Now, we have to choose a value for [tex]\( N \)[/tex] such that it does not repeat any of these [tex]\( x \)[/tex]-values. The possible values provided for [tex]\( N \)[/tex] are:
- [tex]\( N = 11 \)[/tex]
- [tex]\( N = 12 \)[/tex]
- [tex]\( N = 4 \)[/tex]
Let's analyze each possibility:
1. If [tex]\( N = 11 \)[/tex]:
The [tex]\( x \)[/tex]-values would be [tex]\( \{12, 9, 4, 11, 11\} \)[/tex]. This set has a repeat of the number 11, thus violating the definition of a function.
2. If [tex]\( N = 12 \)[/tex]:
The [tex]\( x \)[/tex]-values would be [tex]\( \{12, 9, 4, 11, 12\} \)[/tex]. This set has a repeat of the number 12, thus violating the definition of a function.
3. If [tex]\( N = 4 \)[/tex]:
The [tex]\( x \)[/tex]-values would be [tex]\( \{12, 9, 4, 11, 4\} \)[/tex]. This set has a repeat of the number 4, thus violating the definition of a function.
Since all provided options for [tex]\( N \)[/tex] repeat an existing [tex]\( x \)[/tex]-value in the table, there is no possible number from the given choices (11, 12, or 4) that can be used to replace [tex]\( N \)[/tex] without violating the one-to-one mapping required for a set of ordered pairs to represent a function.
Hence, no number from the given options can replace [tex]\( N \)[/tex] to make the table represent a function.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.