At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the equation [tex]\(\log_2(3x - 7) = 3\)[/tex], let's follow these steps:
1. Understand the logarithmic equation: The given equation is in logarithmic form, which can be expressed as:
[tex]\[ \log_2(3x - 7) = 3 \][/tex]
This means that the expression [tex]\(3x - 7\)[/tex] is the power to which 2 must be raised to get the number 8.
2. Rewrite the logarithmic equation in exponential form: The equation [tex]\(\log_2(3x - 7) = 3\)[/tex] can be rewritten as:
[tex]\[ 3x - 7 = 2^3 \][/tex]
Here, [tex]\(2^3\)[/tex] represents 2 raised to the power of 3, which equals 8.
3. Simplify the exponential equation: Now, simplify the equation by substituting [tex]\(2^3\)[/tex] with 8:
[tex]\[ 3x - 7 = 8 \][/tex]
4. Solve for [tex]\(x\)[/tex]: To isolate [tex]\(x\)[/tex], first add 7 to both sides of the equation:
[tex]\[ 3x = 8 + 7 \][/tex]
This simplifies to:
[tex]\[ 3x = 15 \][/tex]
5. Divide by 3: Finally, divide both sides by 3 to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{15}{3} \][/tex]
Simplifying the fraction gives:
[tex]\[ x = 5 \][/tex]
So, the solution to the equation [tex]\(\log_2(3x - 7) = 3\)[/tex] is [tex]\(x = 5\)[/tex].
1. Understand the logarithmic equation: The given equation is in logarithmic form, which can be expressed as:
[tex]\[ \log_2(3x - 7) = 3 \][/tex]
This means that the expression [tex]\(3x - 7\)[/tex] is the power to which 2 must be raised to get the number 8.
2. Rewrite the logarithmic equation in exponential form: The equation [tex]\(\log_2(3x - 7) = 3\)[/tex] can be rewritten as:
[tex]\[ 3x - 7 = 2^3 \][/tex]
Here, [tex]\(2^3\)[/tex] represents 2 raised to the power of 3, which equals 8.
3. Simplify the exponential equation: Now, simplify the equation by substituting [tex]\(2^3\)[/tex] with 8:
[tex]\[ 3x - 7 = 8 \][/tex]
4. Solve for [tex]\(x\)[/tex]: To isolate [tex]\(x\)[/tex], first add 7 to both sides of the equation:
[tex]\[ 3x = 8 + 7 \][/tex]
This simplifies to:
[tex]\[ 3x = 15 \][/tex]
5. Divide by 3: Finally, divide both sides by 3 to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{15}{3} \][/tex]
Simplifying the fraction gives:
[tex]\[ x = 5 \][/tex]
So, the solution to the equation [tex]\(\log_2(3x - 7) = 3\)[/tex] is [tex]\(x = 5\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.