Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

What is the solution of [tex]$\log _2(3 x-7)=3$[/tex]?

A. [tex]$\frac{1}{3}$[/tex]
B. 4
C. 5
D. [tex][tex]$\frac{16}{3}$[/tex][/tex]


Sagot :

To solve the equation [tex]\(\log_2(3x - 7) = 3\)[/tex], let's follow these steps:

1. Understand the logarithmic equation: The given equation is in logarithmic form, which can be expressed as:
[tex]\[ \log_2(3x - 7) = 3 \][/tex]
This means that the expression [tex]\(3x - 7\)[/tex] is the power to which 2 must be raised to get the number 8.

2. Rewrite the logarithmic equation in exponential form: The equation [tex]\(\log_2(3x - 7) = 3\)[/tex] can be rewritten as:
[tex]\[ 3x - 7 = 2^3 \][/tex]
Here, [tex]\(2^3\)[/tex] represents 2 raised to the power of 3, which equals 8.

3. Simplify the exponential equation: Now, simplify the equation by substituting [tex]\(2^3\)[/tex] with 8:
[tex]\[ 3x - 7 = 8 \][/tex]

4. Solve for [tex]\(x\)[/tex]: To isolate [tex]\(x\)[/tex], first add 7 to both sides of the equation:
[tex]\[ 3x = 8 + 7 \][/tex]
This simplifies to:
[tex]\[ 3x = 15 \][/tex]

5. Divide by 3: Finally, divide both sides by 3 to solve for [tex]\(x\)[/tex]:
[tex]\[ x = \frac{15}{3} \][/tex]
Simplifying the fraction gives:
[tex]\[ x = 5 \][/tex]

So, the solution to the equation [tex]\(\log_2(3x - 7) = 3\)[/tex] is [tex]\(x = 5\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.