Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To simplify the expression [tex]\( 4^{-3} \)[/tex], follow these steps:
1. Understand the negative exponent rule:
When a base is raised to a negative exponent, such as [tex]\( a^{-n} \)[/tex], it can be rewritten as:
[tex]\[ a^{-n} = \frac{1}{a^n} \][/tex]
Applying this rule to our expression [tex]\( 4^{-3} \)[/tex]:
[tex]\[ 4^{-3} = \frac{1}{4^3} \][/tex]
2. Compute the positive exponent:
Next, we need to calculate [tex]\( 4^3 \)[/tex]:
[tex]\[ 4^3 = 4 \times 4 \times 4 \][/tex]
- First, calculate [tex]\( 4 \times 4 \)[/tex]:
[tex]\[ 4 \times 4 = 16 \][/tex]
- Then, multiply the result by 4:
[tex]\[ 16 \times 4 = 64 \][/tex]
Therefore, [tex]\( 4^3 = 64 \)[/tex].
3. Substitute the computed value back into the expression:
Now replace [tex]\( 4^3 \)[/tex] with 64 in the fraction:
[tex]\[ 4^{-3} = \frac{1}{64} \][/tex]
Thus, the simplified expression [tex]\( 4^{-3} \)[/tex] is:
[tex]\[ \boxed{\frac{1}{64}} \][/tex]
1. Understand the negative exponent rule:
When a base is raised to a negative exponent, such as [tex]\( a^{-n} \)[/tex], it can be rewritten as:
[tex]\[ a^{-n} = \frac{1}{a^n} \][/tex]
Applying this rule to our expression [tex]\( 4^{-3} \)[/tex]:
[tex]\[ 4^{-3} = \frac{1}{4^3} \][/tex]
2. Compute the positive exponent:
Next, we need to calculate [tex]\( 4^3 \)[/tex]:
[tex]\[ 4^3 = 4 \times 4 \times 4 \][/tex]
- First, calculate [tex]\( 4 \times 4 \)[/tex]:
[tex]\[ 4 \times 4 = 16 \][/tex]
- Then, multiply the result by 4:
[tex]\[ 16 \times 4 = 64 \][/tex]
Therefore, [tex]\( 4^3 = 64 \)[/tex].
3. Substitute the computed value back into the expression:
Now replace [tex]\( 4^3 \)[/tex] with 64 in the fraction:
[tex]\[ 4^{-3} = \frac{1}{64} \][/tex]
Thus, the simplified expression [tex]\( 4^{-3} \)[/tex] is:
[tex]\[ \boxed{\frac{1}{64}} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.