At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the wavelength of a photon given its energy, we will use the relationship between energy and wavelength in the context of quantum mechanics. The key formula here is derived from the energy of a photon:
[tex]\[ E = \frac{hc}{\lambda} \][/tex]
Where:
- [tex]\( E \)[/tex] is the energy of the photon.
- [tex]\( h \)[/tex] is Planck's constant.
- [tex]\( c \)[/tex] is the speed of light.
- [tex]\( \lambda \)[/tex] is the wavelength of the photon.
Given values:
- [tex]\( E = 2 \)[/tex] electron volts (eV)
Constants:
- Planck's constant, [tex]\( h = 4.135667696 \times 10^{-15} \)[/tex] eV·s
- Speed of light, [tex]\( c = 299,792,458 \)[/tex] m/s
Step-by-Step Solution:
1. Rearrange the formula to solve for wavelength ([tex]\( \lambda \)[/tex]):
[tex]\[ \lambda = \frac{hc}{E} \][/tex]
2. Substitute the known values into the formula:
Plug in [tex]\( h = 4.135667696 \times 10^{-15} \)[/tex] eV·s, [tex]\( c = 299,792,458 \)[/tex] m/s, and [tex]\( E = 2 \)[/tex] eV.
[tex]\[ \lambda = \frac{(4.135667696 \times 10^{-15} \, \text{eV} \cdot \text{s}) \times (299,792,458 \, \text{m/s})}{2 \, \text{eV}} \][/tex]
3. Perform the multiplication and division:
[tex]\[ \lambda = \frac{4.135667696 \times 299,792,458}{2} \times 10^{-15} \, \text{m} \][/tex]
[tex]\[ \lambda = \frac{1,239,841,984}{2} \times 10^{-15} \, \text{m} \][/tex]
[tex]\[ \lambda = 619.9209920275184 \times 10^{-9} \, \text{m} \][/tex]
4. Convert the wavelength from meters to nanometers (1 nm = [tex]\( 10^{-9} \)[/tex] meters):
[tex]\[ \lambda = 619.9209920275184 \, \text{nm} \][/tex]
Thus, the wavelength of a photon with an energy of 2 eV is approximately:
[tex]\[ 619.92 \, \text{nm} \][/tex]
[tex]\[ E = \frac{hc}{\lambda} \][/tex]
Where:
- [tex]\( E \)[/tex] is the energy of the photon.
- [tex]\( h \)[/tex] is Planck's constant.
- [tex]\( c \)[/tex] is the speed of light.
- [tex]\( \lambda \)[/tex] is the wavelength of the photon.
Given values:
- [tex]\( E = 2 \)[/tex] electron volts (eV)
Constants:
- Planck's constant, [tex]\( h = 4.135667696 \times 10^{-15} \)[/tex] eV·s
- Speed of light, [tex]\( c = 299,792,458 \)[/tex] m/s
Step-by-Step Solution:
1. Rearrange the formula to solve for wavelength ([tex]\( \lambda \)[/tex]):
[tex]\[ \lambda = \frac{hc}{E} \][/tex]
2. Substitute the known values into the formula:
Plug in [tex]\( h = 4.135667696 \times 10^{-15} \)[/tex] eV·s, [tex]\( c = 299,792,458 \)[/tex] m/s, and [tex]\( E = 2 \)[/tex] eV.
[tex]\[ \lambda = \frac{(4.135667696 \times 10^{-15} \, \text{eV} \cdot \text{s}) \times (299,792,458 \, \text{m/s})}{2 \, \text{eV}} \][/tex]
3. Perform the multiplication and division:
[tex]\[ \lambda = \frac{4.135667696 \times 299,792,458}{2} \times 10^{-15} \, \text{m} \][/tex]
[tex]\[ \lambda = \frac{1,239,841,984}{2} \times 10^{-15} \, \text{m} \][/tex]
[tex]\[ \lambda = 619.9209920275184 \times 10^{-9} \, \text{m} \][/tex]
4. Convert the wavelength from meters to nanometers (1 nm = [tex]\( 10^{-9} \)[/tex] meters):
[tex]\[ \lambda = 619.9209920275184 \, \text{nm} \][/tex]
Thus, the wavelength of a photon with an energy of 2 eV is approximately:
[tex]\[ 619.92 \, \text{nm} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.