Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the wavelength of a photon given its energy, we will use the relationship between energy and wavelength in the context of quantum mechanics. The key formula here is derived from the energy of a photon:
[tex]\[ E = \frac{hc}{\lambda} \][/tex]
Where:
- [tex]\( E \)[/tex] is the energy of the photon.
- [tex]\( h \)[/tex] is Planck's constant.
- [tex]\( c \)[/tex] is the speed of light.
- [tex]\( \lambda \)[/tex] is the wavelength of the photon.
Given values:
- [tex]\( E = 2 \)[/tex] electron volts (eV)
Constants:
- Planck's constant, [tex]\( h = 4.135667696 \times 10^{-15} \)[/tex] eV·s
- Speed of light, [tex]\( c = 299,792,458 \)[/tex] m/s
Step-by-Step Solution:
1. Rearrange the formula to solve for wavelength ([tex]\( \lambda \)[/tex]):
[tex]\[ \lambda = \frac{hc}{E} \][/tex]
2. Substitute the known values into the formula:
Plug in [tex]\( h = 4.135667696 \times 10^{-15} \)[/tex] eV·s, [tex]\( c = 299,792,458 \)[/tex] m/s, and [tex]\( E = 2 \)[/tex] eV.
[tex]\[ \lambda = \frac{(4.135667696 \times 10^{-15} \, \text{eV} \cdot \text{s}) \times (299,792,458 \, \text{m/s})}{2 \, \text{eV}} \][/tex]
3. Perform the multiplication and division:
[tex]\[ \lambda = \frac{4.135667696 \times 299,792,458}{2} \times 10^{-15} \, \text{m} \][/tex]
[tex]\[ \lambda = \frac{1,239,841,984}{2} \times 10^{-15} \, \text{m} \][/tex]
[tex]\[ \lambda = 619.9209920275184 \times 10^{-9} \, \text{m} \][/tex]
4. Convert the wavelength from meters to nanometers (1 nm = [tex]\( 10^{-9} \)[/tex] meters):
[tex]\[ \lambda = 619.9209920275184 \, \text{nm} \][/tex]
Thus, the wavelength of a photon with an energy of 2 eV is approximately:
[tex]\[ 619.92 \, \text{nm} \][/tex]
[tex]\[ E = \frac{hc}{\lambda} \][/tex]
Where:
- [tex]\( E \)[/tex] is the energy of the photon.
- [tex]\( h \)[/tex] is Planck's constant.
- [tex]\( c \)[/tex] is the speed of light.
- [tex]\( \lambda \)[/tex] is the wavelength of the photon.
Given values:
- [tex]\( E = 2 \)[/tex] electron volts (eV)
Constants:
- Planck's constant, [tex]\( h = 4.135667696 \times 10^{-15} \)[/tex] eV·s
- Speed of light, [tex]\( c = 299,792,458 \)[/tex] m/s
Step-by-Step Solution:
1. Rearrange the formula to solve for wavelength ([tex]\( \lambda \)[/tex]):
[tex]\[ \lambda = \frac{hc}{E} \][/tex]
2. Substitute the known values into the formula:
Plug in [tex]\( h = 4.135667696 \times 10^{-15} \)[/tex] eV·s, [tex]\( c = 299,792,458 \)[/tex] m/s, and [tex]\( E = 2 \)[/tex] eV.
[tex]\[ \lambda = \frac{(4.135667696 \times 10^{-15} \, \text{eV} \cdot \text{s}) \times (299,792,458 \, \text{m/s})}{2 \, \text{eV}} \][/tex]
3. Perform the multiplication and division:
[tex]\[ \lambda = \frac{4.135667696 \times 299,792,458}{2} \times 10^{-15} \, \text{m} \][/tex]
[tex]\[ \lambda = \frac{1,239,841,984}{2} \times 10^{-15} \, \text{m} \][/tex]
[tex]\[ \lambda = 619.9209920275184 \times 10^{-9} \, \text{m} \][/tex]
4. Convert the wavelength from meters to nanometers (1 nm = [tex]\( 10^{-9} \)[/tex] meters):
[tex]\[ \lambda = 619.9209920275184 \, \text{nm} \][/tex]
Thus, the wavelength of a photon with an energy of 2 eV is approximately:
[tex]\[ 619.92 \, \text{nm} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.