At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To compare the probabilities of side effects between adults and children, let's break down the steps thoroughly:
1. Identify the relevant data:
- Number of adults with side effects: 7
- Number of adults without side effects: 43
- Number of children with side effects: 22
- Number of children without side effects: 28
- Total number of adults: 50 (7 + 43)
- Total number of children: 50 (22 + 28)
2. Calculate the probability of side effects for adults:
[tex]\[ P(\text{side effects} \mid \text{adult}) = \frac{\text{Number of adults with side effects}}{\text{Total number of adults}} \][/tex]
Substituting the values, we get:
[tex]\[ P(\text{side effects} \mid \text{adult}) = \frac{7}{50} = 0.14 \][/tex]
3. Calculate the probability of side effects for children:
[tex]\[ P(\text{side effects} \mid \text{child}) = \frac{\text{Number of children with side effects}}{\text{Total number of children}} \][/tex]
Substituting the values, we get:
[tex]\[ P(\text{side effects} \mid \text{child}) = \frac{22}{50} = 0.44 \][/tex]
4. Comparison and conclusion:
- Probability of side effects for adults: [tex]\(0.14\)[/tex]
- Probability of side effects for children: [tex]\(0.44\)[/tex]
Since [tex]\(0.44\)[/tex] (probability for children) is greater than [tex]\(0.14\)[/tex] (probability for adults), we conclude that children have a greater chance of having side effects compared to adults.
Therefore, the correct option is:
B.
[tex]\[ P(\text{side effects} \mid \text{child}) = 0.44 \][/tex]
[tex]\[ P(\text{side effects} \mid \text{adult}) = 0.14 \][/tex]
Conclusion: Children have a much greater chance of having side effects than adults.
1. Identify the relevant data:
- Number of adults with side effects: 7
- Number of adults without side effects: 43
- Number of children with side effects: 22
- Number of children without side effects: 28
- Total number of adults: 50 (7 + 43)
- Total number of children: 50 (22 + 28)
2. Calculate the probability of side effects for adults:
[tex]\[ P(\text{side effects} \mid \text{adult}) = \frac{\text{Number of adults with side effects}}{\text{Total number of adults}} \][/tex]
Substituting the values, we get:
[tex]\[ P(\text{side effects} \mid \text{adult}) = \frac{7}{50} = 0.14 \][/tex]
3. Calculate the probability of side effects for children:
[tex]\[ P(\text{side effects} \mid \text{child}) = \frac{\text{Number of children with side effects}}{\text{Total number of children}} \][/tex]
Substituting the values, we get:
[tex]\[ P(\text{side effects} \mid \text{child}) = \frac{22}{50} = 0.44 \][/tex]
4. Comparison and conclusion:
- Probability of side effects for adults: [tex]\(0.14\)[/tex]
- Probability of side effects for children: [tex]\(0.44\)[/tex]
Since [tex]\(0.44\)[/tex] (probability for children) is greater than [tex]\(0.14\)[/tex] (probability for adults), we conclude that children have a greater chance of having side effects compared to adults.
Therefore, the correct option is:
B.
[tex]\[ P(\text{side effects} \mid \text{child}) = 0.44 \][/tex]
[tex]\[ P(\text{side effects} \mid \text{adult}) = 0.14 \][/tex]
Conclusion: Children have a much greater chance of having side effects than adults.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.