Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Ask your questions and receive precise answers from experienced professionals across different disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine which of the given probability distributions represents a valid probability distribution, we need to evaluate each distribution against two fundamental requirements:
1. All probabilities must be between 0 and 1 inclusive.
2. The sum of all probabilities must be equal to 1.
Let's examine each distribution step by step:
Probability Distribution A:
[tex]\[ \begin{array}{|c|c|} \hline X & P(x) \\ \hline 1 & -0.14 \\ \hline 2 & 0.6 \\ \hline 3 & 0.25 \\ \hline 4 & 0.29 \\ \hline \end{array} \][/tex]
1. Check if all [tex]\( P(x) \)[/tex] values are between 0 and 1:
- [tex]\( -0.14 \)[/tex] is not between 0 and 1 (Invalid).
- [tex]\( 0.6 \)[/tex] is between 0 and 1.
- [tex]\( 0.25 \)[/tex] is between 0 and 1.
- [tex]\( 0.29 \)[/tex] is between 0 and 1.
Given that [tex]\(-0.14\)[/tex] is not valid, Distribution A cannot be a probability distribution. However, for completeness, let's check the sum:
2. Sum of probabilities:
- [tex]\( -0.14 + 0.6 + 0.25 + 0.29 = 1.0 \)[/tex]
- Although the sum is 1, the presence of a negative probability makes it invalid.
Probability Distribution B:
[tex]\[ \begin{array}{|c|c|} \hline X & P(x) \\ \hline 1 & 0 \\ \hline 2 & 0.45 \\ \hline 3 & 0.16 \\ \hline 4 & 0.39 \\ \hline \end{array} \][/tex]
1. Check if all [tex]\( P(x) \)[/tex] values are between 0 and 1:
- [tex]\( 0 \)[/tex] is between 0 and 1.
- [tex]\( 0.45 \)[/tex] is between 0 and 1.
- [tex]\( 0.16 \)[/tex] is between 0 and 1.
- [tex]\( 0.39 \)[/tex] is between 0 and 1.
All values are valid probabilities.
2. Sum of probabilities:
- [tex]\( 0 + 0.45 + 0.16 + 0.39 = 1.0 \)[/tex].
Distribution B satisfies both conditions and is a valid probability distribution.
Probability Distribution C:
[tex]\[ \begin{array}{|c|c|} \hline X & P(x) \\ \hline 1 & 0.45 \\ \hline 2 & 1.23 \\ \hline 3 & -0.87 \\ \hline \end{array} \][/tex]
1. Check if all [tex]\( P(x) \)[/tex] values are between 0 and 1:
- [tex]\( 0.45 \)[/tex] is between 0 and 1.
- [tex]\( 1.23 \)[/tex] is greater than 1 (Invalid).
- [tex]\( -0.87 \)[/tex] is less than 0 (Invalid).
Given that [tex]\( 1.23 \)[/tex] and [tex]\( -0.87 \)[/tex] are out of the valid range, Distribution C is invalid. Nevertheless, check the sum for completeness:
2. Sum of probabilities:
- [tex]\( 0.45 + 1.23 + (-0.87) = 0.81 \neq 1 \)[/tex].
Distribution C does not sum to 1 and has invalid probabilities.
Conclusion:
Among the given distributions, only Probability Distribution B is a valid probability distribution.
1. All probabilities must be between 0 and 1 inclusive.
2. The sum of all probabilities must be equal to 1.
Let's examine each distribution step by step:
Probability Distribution A:
[tex]\[ \begin{array}{|c|c|} \hline X & P(x) \\ \hline 1 & -0.14 \\ \hline 2 & 0.6 \\ \hline 3 & 0.25 \\ \hline 4 & 0.29 \\ \hline \end{array} \][/tex]
1. Check if all [tex]\( P(x) \)[/tex] values are between 0 and 1:
- [tex]\( -0.14 \)[/tex] is not between 0 and 1 (Invalid).
- [tex]\( 0.6 \)[/tex] is between 0 and 1.
- [tex]\( 0.25 \)[/tex] is between 0 and 1.
- [tex]\( 0.29 \)[/tex] is between 0 and 1.
Given that [tex]\(-0.14\)[/tex] is not valid, Distribution A cannot be a probability distribution. However, for completeness, let's check the sum:
2. Sum of probabilities:
- [tex]\( -0.14 + 0.6 + 0.25 + 0.29 = 1.0 \)[/tex]
- Although the sum is 1, the presence of a negative probability makes it invalid.
Probability Distribution B:
[tex]\[ \begin{array}{|c|c|} \hline X & P(x) \\ \hline 1 & 0 \\ \hline 2 & 0.45 \\ \hline 3 & 0.16 \\ \hline 4 & 0.39 \\ \hline \end{array} \][/tex]
1. Check if all [tex]\( P(x) \)[/tex] values are between 0 and 1:
- [tex]\( 0 \)[/tex] is between 0 and 1.
- [tex]\( 0.45 \)[/tex] is between 0 and 1.
- [tex]\( 0.16 \)[/tex] is between 0 and 1.
- [tex]\( 0.39 \)[/tex] is between 0 and 1.
All values are valid probabilities.
2. Sum of probabilities:
- [tex]\( 0 + 0.45 + 0.16 + 0.39 = 1.0 \)[/tex].
Distribution B satisfies both conditions and is a valid probability distribution.
Probability Distribution C:
[tex]\[ \begin{array}{|c|c|} \hline X & P(x) \\ \hline 1 & 0.45 \\ \hline 2 & 1.23 \\ \hline 3 & -0.87 \\ \hline \end{array} \][/tex]
1. Check if all [tex]\( P(x) \)[/tex] values are between 0 and 1:
- [tex]\( 0.45 \)[/tex] is between 0 and 1.
- [tex]\( 1.23 \)[/tex] is greater than 1 (Invalid).
- [tex]\( -0.87 \)[/tex] is less than 0 (Invalid).
Given that [tex]\( 1.23 \)[/tex] and [tex]\( -0.87 \)[/tex] are out of the valid range, Distribution C is invalid. Nevertheless, check the sum for completeness:
2. Sum of probabilities:
- [tex]\( 0.45 + 1.23 + (-0.87) = 0.81 \neq 1 \)[/tex].
Distribution C does not sum to 1 and has invalid probabilities.
Conclusion:
Among the given distributions, only Probability Distribution B is a valid probability distribution.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.